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1. Summary of Accomplishments

This project on uncertainty quantification (UQ) mathematics was funded by the Department of Energy
Office of Science under the Advanced Scientific Computing Research Program from October 2010 to Septem-
ber 2013. In this project we proposed to develop an innovative uncertainty quantification methodology that
captures the best of the two competing approaches in UQ, namely, intrusive and non-intrusive approaches.
The idea is to develop the mathematics and the associated computational framework and algorithms to
facilitate the use of intrusive or non-intrusive UQ methods in different modules of a multi-physics multi-
module simulation model in a way that physics code developers for different modules are shielded (as much
as possible) from the chores of accounting for the uncertainties introduced by the other modules.

As the result of our research and development, we have produced a number of publications, conference
presentations, and a software product as listed below:

Journal Papers:

1. X. Chen, B. Ng, Y. Sun, and C. Tong, A Flexible Uncertainty Quantification Method for Linearly
Coupled Multi-physics Systems, J. Comput. Phys., http://doi:10.1016/j.jcp.2013.04.009, 2013.

2. X. Chen, B. Ng, Y. Sun, and C. Tong, A Computational Method for Simulating Subsurface Flow
and Reactive Transport in Heterogeneous Porous Media Embedded with Flexible Uncertainty
Quantification, J. Water Resour. Res., http://doi: 10.1002/wrcr.20454, 2013.

Conference Presentations:

1. C. Tong, G. Iaccarino, and B. Lee, A High Performance Embedded Hybrid Methodology for
Uncertainty Quantification with Applications, in Proc. SciDAC, Denver, CO, July 10–14, 2011.

2. X. Chen, B. Ng, Y. Sun, and C. Tong, Hybrid Uncertainty Quantification Techniques for Multi-
species Reactive Transport Applications, in a session on Uncertainty Assessment, Optimization,
and Sensitivity Analysis in Integrated Hydrologic Modeling as Applications of Hydro-informatics,
AGU Fall Meeting, San Francisco, CA, December, 2011.

3. X. Chen, B. Ng, Y. Sun, and C. Tong, Modular Uncertainty Quantification based on Multi-
physics Decomposition with Application in Reactive Transport, SIAM Conference on Uncertainty
Quantification, Raleigh, NC, April 2, 2012.

4. G. Iaccarino, and B. Lee, C. Tong and X. Chen, A High Performance Embedded Hybrid Method-
ology for Uncertainty Quantification with Applications, in Proc. Exascale Research Workshop,
Portland, OR, April 16, 2012.

5. X. Chen, B. Ng, Y. Sun, and C. Tong, Modular Uncertainty Quantification based on Multi-physics
Decomposition with Application in Nonlinear Solute Reactive Transport Using Karhunen-Loeve
Expansion, Computational Methods in Water Resources Conference on Uncertainty Quantifica-
tion, Urbana-Champaign, IL, June 2012.

6. C. Tong, Some Thoughts on in-situ UQ and Exascale Computing, Exascale Research Conference,
Arlington, VA, October 1, 2012.

7. X. Chen, Y. Sun, and C. Tong, Dimension Reduction and Bayesian Inference in Reactive Transport
with Embedded Capability for Uncertainty Quantification, in a session on Uncertainty Quantifi-
cation and Parameter Estimation: Impact on Risk and Decision Making, AGU Fall Meeting, San
Francisco, CA, December, 2012.

8. X. Chen, J. Connors, and C. Tong, Modular Resolution of Uncertainty and Numerical Error Distri-
butions for Operator-splitted Advection Diffusion Equation, DOE Applied Mathematics Program
Meeting, Albuquerque, NM, August 2013.

Software Product:

1. MEDUSA - supports the propagation of uncertainty and global sensitivities through modules with
different UQ methods (polynomial chaos, sampling, sampling with derivatives).
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2. Introduction

The discipline of uncertainty quantification seeks to develop and applies rigorous methodologies and
methods to quantify uncertainties associated with the modeling and simulation of physical processes, with
the goals of estimating the variability of the output of interest from all relevant sources of uncertainty (uncer-
tainty analysis) and quantifying the contribution of individual sources to the overall uncertainty (sensitivity
analysis). Advances in mathematical/statistical techniques and the availability of high performance comput-
ers in recent years have provided an unprecedented opportunity to undertake the computationally intensive
task of “model predictions with confidence.”

UQ approaches are often categorized as either non-intrusive or intrusive. Non-intrusive methods generate
model output probability distributions by first creating a sample drawn from the given uncertain parameter
probability distributions, running deterministic simulations with the sample, and finally computing the
statistical moments and/or sensitivities. There are many sampling designs such as Monte Carlo, quasi-
Monte Carlo ([1], Latin Hypercube ([2], importance sampling [3, 4], etc. An advantage of non-intrusive
methods is the simplicity of interfacing UQ software with deterministic simulation models. However, non-
intrusive methods generally suffer from slow convergence rate of the statistical moments, although viable
remedies using response surface techniques are available.

Intrusive methods, on the other hand, generally require re-formulation and re-implementation of deter-
ministric models. A popular class of intrusive methods is the stochastic Galerkin method based on polynomial
chaos expansion (PCE) [5, 6, 7]. PCE has been used successfully on many applications such as solid me-
chanics [5], transport in heterogeneous media [8], fluid mechanics [9, 10], combustion [11], etc. PCE-based
methods are sometimes more computationally efficient than non-intrusive sampling-based methods [12, 13].
A review of spectral UQ methods in fluids has been discussed by Knio et al. [9] and Najm el al. [14].

Despite their successes, advances in intrusive methods, however, have not been keeping pace with the
fast increases in the complexities of modern multi-physics models. A major reason is that implementation
of intrusive methods requires major modifications to existing deterministic codes, a task that may be too
cumbersome and time-consuming for most complex multi-physics multi-scale models. Moreover, the size
of the coupled system arising from the discretization of the stochastic systems may become so large that
renders large-scale and high-resolution model simulation intractable. Furthermore, there are still many
challenges with intrusive methods for complex applications such as turbulent flow and highly nonlinear
transient problems. To overcome some of the difficulties with intrusive PCE methods, sampling-based non-
intrusive PCE methods have been proposed as viable alternatives (for example, [15]). However, non-intrusive
PCE methods are largely similar to polynomial regression methods in existence for decades. Even there are
generally some convergence benefits with non-intrusive PCE methods, the rigid requirement of sample point
placement makes these methods unattractive in practice.

Recent developments in both intrusive and non-intrusive stochastic expansion methods (polynomial chaos
[16], stochastic collocation [17, 18], low-rank approximations [19]) and response surface reconstruction (Krig-
ing [20], radial basis functions [21], Pade-Legendre approaches [22]) have demonstrated impressive efficiency
gains. These methods have demonstrated how the mathematical structure of the problems and the smooth-
ness of the system responses can be exploited to achieve superlinear convergence [18]. The increasing at-
tention towards development of new methodologies for uncertainty propagation begs the questions: (1) Is a
monolithic approach to UQ the most effective one? (2) How can we accommodate new algorithmic enhance-
ments in the solution of stochastic PDEs that are suited to a specific physical problem? (3) Can we tailor
the UQ strategy to map optimally on evolving parallel architectures? (4) Is it possible to rigorously merge
different methodologies into a UQ framework that offers flexibility and adaptivity? (5) What if we do not
have the access to modify some commercial codes intrusively?

To overcome some of the difficulties with either intrusive or non-intrusive approaches, some hybrid ap-
proaches bridging the gaps between the two have been proposed recently, such as the multi-state procedure
[23] and the mixed aleatory/epistemic uncertainties representations [24]. Another research effort on hybrid
UQ methods is the domain hybridization method driven by the need to couple two different descriptions of
turbulent flows [25]. The present article explores another alternative to propagate uncertainties using hy-
brid (or partially embedded) techniques. Instead of representing a stochastic multi-physics model purely in
terms of polynomial chaos or through sampling the associated deterministic model, our hybrid UQ approach
blends UQ methods best suited or only available for each individual physics module, and our hybrid UQ
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framework seamlessly “glues” these modules together to facilitate uncertainty/sensitivity propagation for
the full system.

In this report, we present mathematical concepts for hybrid UQ as well as a software infrastructure to
capture the underlying numerical functions for propagating uncertainties and sensitivities across physics
modules in a multi-physics environment. The outline of the paper is as follows: In Section 3 we provide a
brief review of intrusive methods based on polynomial chaos, sampling-based UQ methods, and semi-intrusive
methods such as methods that exploit additional information from simulation models such as derivatives.
In Section 4, we give a detailed presentation of the underlying mathematics for propagation of uncertainties
and sensitivities. In Section 5, we describe a computational framework for embedding the computational
infrastructure of the underlying numerical algorithms for uncertainty propagation. In Section 6, we provide a
few numerical examples to demonstrate how our hybrid UQ methodology works, followed by a short summary
in Section 7.

3. Uncertainty Quantification Methods

In this section we give a brief review of the various UQ methods in use today. We begin with the intrusive
polynomial chaos methods, followed by non-intrusive sampling methods, and ended with a derivative-based
semi-intrusive method.

3.1. Intrusive Methods

One popular intrusive method is the stochastic Galerkin method using polynomial chaos expansion (PCE)
[5, 6], which has been successfully applied to UQ analysis in many applications, including solid mechanics [5],
transport in heterogeneous media [8], combustion [11], and fluid mechanics [9, 10]. The method represents
the solution of stochastic equations using PCE. The stochastic equations are rewritten in terms of these
solution expansions then projected onto an appropriate set of basis functions to derive a new, larger set
of deterministic equations, from which the PCE coefficients are solved then used to reconstruct the output
uncertainties.

Formally, polynomial chaos is a member of the set of homogeneous chaos, which was first defined by
Wiener [26] as the span of Hermite polynomial functionals of a Gaussian random process. It was later
pioneered by Ghanem and Spanos [5] for quantifying uncertainties in various applications. Subsequently,
Xiu and Karniadakis [10] generalized Wiener’s idea of chaos for various classes (based on Askey’s classification
[27]) of orthogonal polynomials that are coupled to their associated stochastic processes.

Consider a probability space (Θ,Σ, P r), where Θ is the sample space, Σ is a σ-algebra on Θ (non-empty
collection of subset of Ω that is closed under complementation and countable unions of its member), and Pr
is a probability measure (mapping Σ to [0, 1]). Let’s consider m-dimensional real-valued random variables
ξ = {ξ1, · · · , ξm}, with known distribution. Let Ξ denote the range of ξ, and (Ξ,BΞ, P rΞ) the associated
probability space, and we have

X : Θ 7→ Ξ. (1)

Let L2(Θ, P r) denote the set of second-order random variables such that for ∀X ∈ L2(Θ, P r), we have
E[|X |2] <∞, where the mean E is defined as:

E [X ] =

∫

Θ

X (ξ (θ)) dPr (θ) . (2)

The set of second-order random variables form a Hilbert space with respect to the inner product:

〈X,Y 〉 = E [XY ] =

∫

Θ

X (ξ (θ))Y (ξ (θ)) dPr (θ) =

∫

Ξ

∫

Ξ

X (x)Y (y) dPrΞ (x,y) (3)

where PrΞ(x,y) is the joint probability density function of x and y. The associated norm of X is
√

E[|X |2].
An important concept in representing uncertainty using polynomial chaos is that one can express a second-

order random variable X involving m random variables ξ1, · · · , ξm as a sum of orthogonal polynomials:

X = X0 +

m∑

j1=1

Xj1Ψ1 (ξj1 (θ)) +

m∑

j1=1

j1∑

j2=1

Xj1,j2Ψ2 (ξj1 (θ) , ξj2 (θ)) + · · · (4)
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where Ψk(ξj1 , · · · , ξjk
) are polynomial chaos of order k in the variables (ξj1 , · · · , ξjk

) with its type and domain
depending on the distributions imposed on the m-dimensional random variables ξ = {ξ1, · · · , ξm}.

To simplify notation, this multi-dimensional expansion is usually mapped term-by-term to a single index
form given by:

X̂ =

Q
∑

j=0

XjΨj (ξ) (5)

where Ψj(ξ)’s are polynomial chaoses in single-index form and (Q+ 1) is the total number of terms used for
polynomial order ≤ p such that:

Q+ 1 =
(p+m)!

p!m!
. (6)

All the polynomial chaoses are mutually orthogonal with regards to the inner product associated to
the space spanned by the random variables ξ. In particular, when uniform distribution is assumed for the
m random variables, the associated orthogonal polynomials are the Legendre polynomials which have the
following property:

∫ 1

−1

Lj (x)Li (x) dx =
2

2j + 1
δjl (7)

where δjl is the Kronecker delta. The Legendre polynomials satisfy the recurrence relation:

(l + 1)Ll+1 (x) − (2l+ 1)xLl (x) + lLl−1 (x) = 0 (8)

with L0(x) = 1 and L1(x) = x. Using PCE, it is straightforward to verify that the approximate mean of X
(using (Q+ 1) terms) is X0 and the approximate variance is:

∫ 1

−1





Q
∑

j=0

XjΨj (ξ) − x0Ψ0 (ξ)





2

dξ =

Q
∑

j=1

[
X2

j

〈
Ψ2

j

〉]
. (9)

Furthermore, let ξ̂ be a subset of ξ and Ψ̂ be the set of all Legendre polynomials of order up to p involving
only the random variables in ξ̂. Then the partial variance (Sobol’ index) for this subset can be calculated
by:

S
(

ξ̂
)

≈
∑

Ψ∈Ψ̂

[
X2

j

〈
Ψ2

j

〉]

∑Q
j=1

[
X2

j

〈
Ψ2

j

〉] . (10)

To model uncertainty in a given partial differential equation system with parametric uncertainties, the
independent and the dependent random variables are both represented by the appropriate PCE. A Galerkin
projection is then performed onto each of the (Q+1) orthogonal polynomials giving rise to a coupled system
of (Q+ 1) equations, which are discretized and solved for the coefficients Xj ’s. Finally, the coefficients are
substituted back into the expansion.

Intrusive methods generally, when the input-output relationship is sufficiently smooth, has the potential
to be more computationally efficient than non-intrusive methods [12, 13]. However, this is at the expense
of (1) higher development effort, since implementation require major modifications to existing deterministic
codes, and (2) additional overhead in solving the larger set of equations, which might be structurally different
enough to warrant new solvers. These two challenges might be too cumbersome and time-consuming to
overcome for most complex multi-physics multi-scale models. As a result, intrusive methods have not been
as widely adopted as non-intrusive methods because their advances have not been keeping pace with the fast
increases in the complexities of modern multi-physics models.

3.2. Non-intrusive Methods

Non-intrusive methods consist of generating samples of random variables based on their distributions
via a fixed sampling scheme. Different sampling schemes generate samples with different “space filling”
properties. The samples are then propagated through the model by running the model repeatedly with
different sample inputs. The outputs of interest are collected and the desired statistics such as mean and

5



standard deviation are computed. Again, let m be the number of random variables and let P (ξ1, ξ2, ..., ξm)
be the corresponding joint probability distribution function. Let S ∈ RN×m be the set of N samples drawn
from this distribution where each row of S is a single sample of the input random variables. Let Y ∈ RN be
the (univariate) outputs corresponding to the N “input” samples. Then, the sample approximations of the
mean and standard deviation are:

µ =
1

N

N∑

i=1

Yi (11)

σ =
1

N − 1

√
√
√
√

N∑

i=1

(Yi − µ)2. (12)

While straightforward to implement, the non-intrusive approach suffers from poor computational effi-
ciency: the convergence rate of the computed mean is only O(1/

√
N) for the Monte Carlo sampling method.

Thus, to increase the accuracy of the computed mean by one decimal would require increasing N by 100-fold.
Despite the fact that other sampling strategies (e.g., Latin hypercube [2]), Quasi-Monte Carlo [1], importance
sampling [3, 4]) have been proposed to improve convergence, existing sampling methods are still inadequate
to handle large-scale and computationally expensive models.

To mitigate this problem of slow convergence, one might exploit the fact that, in many real-life models,
the outputs of interest are smooth function of the input random variables. This motivates the use of response
surface models (also known as surrogate models, meta-models,and emulators) that interpolate the values of
the output variables. Interpolation is generally computationally much cheaper than the actual simulation
runs, thus allowing for quicker and larger-scale generation of samples. The choice of interpolation scheme is
heavily dependent on the specific application problem.

It should be noted that the non-intrusive form of the polynomial chaos method (sometimes called spectral
collocation) is analogous to a special type of polynomial regression scheme. An advantage of this scheme is
that if the output of interest is a polynomial function of the input random variables, the convergence rate
of computing the basic statistics is exponential with respect to the sample size, and the basic statistical
measures are readily available from the polynomial chaos coefficients associated with the output variables.

Once a good response surface model has been constructed, Sobol’ indices can be computed in several ways
such as Sobol’ method [28], McKay’s method [29], or direct numerical integration. For example, McKay’s
method makes use of the replicated Latin hypercube (r-LHS) sampling strategy. In the r-LHS design, each
random variable ξi, i = 1, ...,m, takes on distinct values xij , j = 1, ..., L, where L is called the number of
levels. These values are to be randomized and re-used R times to form the final design which has N = LR
sample points.

The estimator for the Sobol’ index corresponding to ξi is given by:

S(ξi) =
1

V (Y )







1

L

L∑

j=1

[
Ȳ (ξi = xij) − Ȳ

]2 − 1

LR2

L∑

j=1

R∑

r=1

[

Y (r)(ξi = xij) − Ȳ (ξi = xij)
]2






(13)

where Ȳ (ξi = xij) = 1
R

∑R
r=1 Y

(r)(ξi = xij) and Y (r)(ξi = xij) is the output of the sample point correspond-
ing to ξi = xij in the rth replication; Ȳ and V (Y ) are the aggregate mean and variance of Y , respectively.

3.3. Semi-intrusive Methods

Semi-intrusive methods uses additional information (beyond typical model outputs of interest) to aid
in the UQ task. For example, many simulation models are equipped with derivatives (deriative of outputs
interest with respect to some uncertain parameters). These derivative information can greatly speed up UQ
by reducing the sample size needed for, for example, building response surface models. In the following
we show how derivative information is used in using sampling and polynomial regression to build response
surface. Again, let {Si, Yi}N

1 be a sample of size N where Si ∈ ℜm is a sample point with m random variables
and Yi ∈ ℜ is the corresponding model output. In addition, let (Yi)j be the derivative of Y with respect to
the j-th random variable.
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For example, a quadratic regression analysis assumes the following form:

Y = b0 +

m∑

k=1

bkξk +

m∑

k=1

m∑

j≤k

bkjξkξj + ǫ (14)

where bk’s and bkj ’s are the regression coefficients to be determined, and ǫi is the regression error. Subsituting
the sample to this equation gives rise to N equations which can be expressed in matrix form as:

Y = Sb + ǫ (15)

where S is a N × ((m + 2)(m + 1)/2) matrix where b consists of all bk’s and bkj ’s. Minimizing the 2-norm
of the discrepancies ǫ is equivalent to applying the least-squares approach so that

ST Sb = ST Y (16)

giving
b = (ST S)−1ST Y . (17)

Here, unique solution (b) is possible only when ST S is nonsingular, which is satisfied if the number of rows
in the matrix is larger or equal to the number of columns, and the sample is well-distributed (no dependency
between Si and Sj for i 6= j).

When derivatives are also available at each sample points, we can use the same least-squares procedure.
In this case, the derivatives of the quadratic equation with respect to each random variable is:

∂Y

∂ξl
= bl +

l−1∑

k=1

blkξk +
m∑

k=l+1

bklξk + 2bllξl. (18)

Thus, since each sample point has m + 1 output values (model output and m derivatives) and thus m + 1
rows in the regression matrix, ideally the sample size can be reduced by a factor of m+1 and the uniqueness
requirement can still be satisfied. In practice, the number of rows should be at least twice the number
of columns for numerical stability. Once the regression coefficients have been computed, the polynomial
function can be used to perform uncertainty and sensitivity analysis.

4. Mathematical Concepts for Hybrid and Modular UQ Methods

Hybrid methods seek to bridge the gap between the practicality of non-intrusive methods and the potential
efficiency and robustness of intrusive methods. The main idea is to integrate both methods into a UQ
framework of a complex multi-physics model.

The concept of hybridization for UQ has been realized in many forms ([30, 31, 32]). For example,
Hosder et al. [15] presented a non-intrusive polynomial chaos method, which uses samples to construct
the equations for solving the PCE coefficients. Surana and Banaszuk [33] proposed probabilistic waveform
relaxation, applicable for networked systems with weakly coupled subsystems, which integrates generalized
polynomial chaos and probabilistic collocation into waveform relaxation. Abgrall et al. [34] proposed a
semi-intrusive method that solves the deterministic problem over an extended domain that encapsulates
uncertainty, which requires less modification to the deterministic solver and can also handle more general
types of input distributions. Constantine et al. [32, 35] combined the intrusive Galerkin method with non-
intrusive stochastic allocation and demonstrated their method on a one-way decoupled system. Guadagnini et
al. [36] employed random domain decomposition to divide physical domain for composite material according
to a large-scale distribution of geological units and then quantify the local-level uncertainty within each
disjoint, statistically homogeneous unit. Our work is most similar to [32], but allows uncertainty introduced
in one module to influence the stochastic dependent variables in the second module, making it applicable to
more general multi-physics models.

Most of the aforementioned methods are only applicable for specialized problems that satisfy the methods’
assumptions of decoupled or weakly-coupled physics modules. In contrast, the hybrid UQ methodology we
aspire to develp is more general. Our notion of “hybrid” refers to techniques that facilitate the use of different
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intrusive and non-intrusive methods for strongly-coupled modules in a multi-physics simulation. This is a
largely unexplored concept with many possible research directions. For example, one can use an intrusive
method in one single-physics module and a non-intrusive method in another module, and then piece their
uncertainties together (as done in this paper). Alternatively, a single-physics module can be made hybrid
with some of its parameters handled intrusively and others handled non-intrusively to handle nonlinear
dependencies.

The hybrid concept is ideally compatible with the current practice of multi-physics code development,
namely, the use of “plug-and-play” to facilitate the natural division of physics expertise and to ensure that
future model updates can be performed with minimal effort. Other potential benefits of hybrid UQ methods
are: (1) higher computational efficiency; (2) higher degree of flexibility of selecting UQ schemes for each
physics module; and (3) ability to naturally track evolution of uncertainties (and sensitivity) in detail (at
mesh point level).

To successfully develop this methodology, several challenges must be addressed: (1) how to accurately
propagate uncertainties between individual physics modules with minimal loss of uncertainty information;
(2) how to propagate uncertainties when the overall number of parameters in the system is large; (3) how to
perform parameter estimation and calibration in view of observational data; and (4) how to design a flexible
software framework for supporting hybrid UQ for general multi-physics applications. We will address some
of these issues in this report.

In this section, we introduce the general theory behind our modularly hybrid UQ framework for global
uncertainty and sensitivity propagation. This UQ framework is different from other types of hybrid frame-
works: while other hybrid frameworks combine properties of intrusive and non-intrusive methods into one
monolithic algorithm for uncertainty propagation, our framework is hybrid in the modular sense, in that
different algorithms (pure or combined versions of intrusive or non-intrusive) can be applied to different mod-
ules in the multi-physics system. Our objective is to develop the mathematics and algorithms so that each
module is self-contained in its own uncertainty propagation yet together global uncertainty is propagated.

In the rest of this section, we first introduce a mathematical formalism for modular decomposition. We
prove a few lemmas on the mathematics of transformations between the local (to each module) and the
global stochastic space. Subsequently, we will provide details on the transformations for different types
of modules (linearly- or nonlinearly-coupled in the stochastic space for intrusive modules, non-intrusive
and semi-intrusive modules). The goal is to develop a computational framework to facilitate inter-module
transformations in a manner that is transparent to physics module developers.

4.1. Modular Polynomial-Chaos (PC)-based Uncertainty Representation

Without loss of generality, for a component-wise formulation, we define Θ1 ⊆ R
m1 and Θ2 ⊆ R

m2 such
that Θ1 ∩ Θ2 ≡ ∅ and Θ1 × Θ2 ≡ Θ. We also assume that we have Pr1 : Θ1 → [0, 1] and Pr2 : Θ2 → [0, 1]
such that Pr (θ1, θ2) = Pr1 (θ1)Pr2 (θ2)∀θ1 ∈ Θ1 and θ2 ∈ Θ2. In this setting, we assume that each module
has a local set of parameters that are different from and are uncorrelated to the set of external parameters.

We define a conditional polynomial basis in Θ1 or Θ2 using ΨΘ1,p and ΨΘ2,p with cardinality Q1 +1 and
Q2 + 1 respectively. i.e.

Q1 + 1 =
(p+m1)!

p!m1!
; Q2 + 1 =

(p+m2)!

p!m2!
. (19)

Next, we represent the coefficients corresponding to the two conditional polynomial bases in matrix form as:

[

X̂
]

Θ1,p
=
[

X̂Θ1,0 · · · X̂Θ1,Q1

]
(20)

and [

X̂
]

Θ2,p
=
[

X̂Θ2,0 · · · X̂Θ2,Q2

]
(21)
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such that

X (θ1, θ2) =
[

X̂ (θ2)
]

Θ1,p
[Ψ (θ1)]Θ1,p , (22)

=
[

X̂ (θ1)
]

Θ2,p
[Ψ (θ2)]Θ2,p ; and (23)

[

X̂ (θ2)
]

Θ1,p
=

∫

Θ1

X (θ1, θ2) [Ψ (θ1)]
T
Θ1,p dPr1 (θ1) , (24)

[

X̂ (θ1)
]

Θ2,p
=

∫

Θ2

X (θ1, θ2) [Ψ (θ2)]
T
Θ2,p dPr2 (θ2) . (25)

Based on the above definitions, now we can define conditional mean and variance as:

µp (X ; θ2) = 〈X〉Θ1
= X̂Θ1,0 (θ2) ; (26)

Σp (X ; θ2) =
〈
XXT

〉

Θ1
− 〈X〉Θ1

〈X〉TΘ1
=

Q1∑

j=1

X̂Θ1,j (θ2) X̂
T
Θ1,j (θ2) ; (27)

µp (X ; θ1) = 〈X〉Θ2
= X̂Θ2,0 (θ1) ; (28)

Σp (X ; θ1) =
〈
XXT

〉

Θ2
− 〈X〉Θ2

〈X〉TΘ2
=

Q2∑

j=1

X̂Θ2,j (θ1) X̂
T
Θ2,j (θ1) . (29)

We will now prove two lemmas that are necessary in deriving the global mean and variance estimates
using either of the conditional polynomial chaos expansions. The first lemma defines the restriction and
prolongation transformations between the global and modular PCE.

Lemma 1: Let X be a second order random variable defined in the conditional probability space above,
then the respective restriction and prolongation operations can be represented by:

[

X̂ (θ2)
]

Θ1,p
=
[

X̂
]

Θ,p
[Π1,2 (θ2)]p restriction and (30)

[

X̂
]

Θ,p
=

〈[

X̂
]

Θ1,p
[Π1,2]

T
p

〉

Θ2

prolongation, (31)

respectively, where

[Π1,2 (θ2)]p =






π0 (θ2) 0 0

0
. . . 0

0 0 πP1
(θ2)




 (32)

such that

∀0 ≤ j ≤ Q1, πj (θ2) ≡ [Ψ (θ2)]
T
Θ2,q(j) : q (j) = max

0≤k≤p
{p− k :

(k +m1)!

k!m1!
≤ j + 1 <

(k + 1 +m1)!

(k + 1)!m1!

}

(33)

is a transformation matrix with Q1 columns and at-most one non-zero element per row.
Proof : By definition of X , we have
∫

Θ1

[

X̂ (θ2)
]

Θ1,p
[Ψ (θ1)]Θ1,p [Ψ (θ1)]

T
Θ1,p dPr1 (θ1) =

∫

Θ1

[

X̂
]

Θ,p
[Ψ (θ; θ2)]Θ,p [Ψ (θ1)]

T
Θ1,p dPr1 (θ1) ;

⇒
[

X̂ (θ2)
]

Θ1,p





∫

Θ1

[Ψ (θ1)]Θ1,p [Ψ (θ1)]
T
Θ1,p dPr1 (θ1)



 =
[

X̂
]

Θ,p





∫

Θ1

[Ψ (θ; θ2)]Θ,p [Ψ (θ1)]
T
Θ1,p dPr1 (θ1)



 ;

⇒
[

X̂ (θ2)
]

Θ1,p
=
[

X̂
]

Θ,p





∫

Θ1

[Ψ (θ; θ2)]Θ,p [Ψ (θ1)]
T
Θ1,p dPr1 (θ1)



 . (34)
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We can verify that

∫

Θ1

[Ψ (θ; θ2)]Θ,p [Ψ (θ1)]
T
Θ1,p dPr1 (θ1) =






π0 (θ2) 0 0

0
. . . 0

0 0 πP1
(θ2)




 = [Π1,2 (θ2)]p ; (35)

As such, we obtain that:
〈[

X̂
]

Θ1,p
[Π1,2]

T
p

〉

Θ2

=

∫

Θ2

[

X̂ (θ2)
]

Θ1,p
[Π1,2 (θ2)]

T
p dPr2 (θ2)

=

∫

Θ2

[

X̂
]

Θ,p
[Π1,2 (θ2)]p [Π1,2 (θ2)]

T
p dPr2 (θ2)

=
[

X̂
]

Θ,p





∫

Θ2

[Π1,2 (θ2)]p [Π1,2 (θ2)]
T
p dPr2 (θ2)





=
[

X̂
]

Θ,p
. (36)

[Π2,1]p and
[

X̂0

]

Θ2,p
can be defined in the similar manner. This enables us to compute the global mean and

variance directly using the conditional PCE coefficients as follows.

µp (X) =
〈

X̂Θ1,0

〉

Θ2

=
〈

X̂Θ2,0

〉

Θ1

; (37)

Σp (X) =

〈
P1∑

j=1

X̂Θ1,jX̂
T
Θ1,j

〉

Θ2

+
〈

X̂Θ1,0X̂
T
Θ1,0

〉

Θ2

−

〈

X̂Θ1,0

〉

Θ2

〈

X̂T
Θ1,0

〉

Θ2

〈
P1∑

j=1

X̂Θ2,jX̂
T
Θ2,j

〉

Θ1

+
〈

X̂Θ2,0X̂
T
Θ2,0

〉

Θ1

−
〈

X̂Θ2,0

〉

Θ1

〈

X̂T
Θ2,0

〉

Θ1

. (38)

Lemma 2: Let X be a second order random variable defined in the conditional probability space above,
then

〈

X̂Θ1,0

〉

Θ2

=
〈

X̂Θ2,0

〉

Θ1

= X̂0; (39)

〈
P1∑

j=1

X̂Θ1,jX̂
T
Θ1,j

〉

Θ2

=

P∑

j=P2+1

X̂jX̂
T
j . (40)

Proof: Let us define ê0 =
[

1 0 · · ·
]T

. We have

〈

X̂Θ1,0

〉

Θ2

=

∫

Θ2

X̂Θ1,0 (θ2) dPr2 (θ2)

=

∫

Θ2

([

X̂
]

Θ,p
[Π1,2 (θ2)]p ê0

)

dPr2 (θ2)

=
[

X̂
]

Θ,p

∫

Θ2

(

[Π1,2 (θ2)]p ê0

)

dPr2 (θ2)

=
[

X̂0 · · · X̂P

]
∫

Θ2











π0 (θ2)
0
...









 dPr2 (θ2)

= X̂0. (41)
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We can similarly show that
〈

X̂Θ2,0

〉

Θ1

= X̂0, thereby we consider the following:

〈
Q1∑

j=1

X̂Θ1,jX̂
T
Θ1,j

〉

Θ2

=

∫

Θ2





Q∗

∑

j=1

X̂Θ1,j (θ2) X̂
T
Θ1,j (θ2)



 dPr2 (θ2)

=

∫

Θ2

[

X̂
]

Θ,p
[Π1,2 (θ2)]p

(
I − ê0ê

T
0

)
[Π1,2 (θ2)]

T
p

[

X̂
]T

Θ,p
dPr2 (θ2)

=
[

X̂
]

Θ,p





∫

Θ2

[Π1,2 (θ2)]p
(
I − ê0ê

T
0

)
[Π1,2 (θ2)]

T
p dPr2 (θ2)





[

X̂
]T

Θ,p

=
[

X̂
]

Θ,p








∫

Θ2








0 0 0 0
0 π1 (θ2) 0 0

0 0
. . . 0

0 0 0 πP1
(θ2)







dPr2 (θ2)








[

X̂
]T

Θ,p

=

Q
∑

j=0

X̂jX̂
T
j −

Q′

∑

j=0

X̂jX̂
T
j : 0 < Q′ < Q.

Using the definition of q (0), we obtain

Q′ + 1 =
(p+m2)!

p!m2!
. (42)

Figure 1: Hybrid (modular) UQ conceptual model

4.2. Modular Operators and Uncertainty Propagation

We continue by explaining the operators that handle information between the modules. For illustrative
purposes, we will explain these operators within the context of forward uncertainty propagation for linearly
coupled modules.

Let K be the number of independent physics modules in the multi-physics system. Each module has
embedded UQ, meaning each module has a “stochastic” (intrusive or non-intrusive) solver that propagates
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uncertainty from inputs to outputs at each time step. Let ξ = {ξ1, ξ2, · · · , ξK} be K disjoint subsets of
independent second-order random variables, where ξk denotes module k’s internal random variables. Also,
let u(x, ξ) be the unknown global quantities of interest for the full multi-physics system. At each time step,
each module k contributes local information to update the global quantities of interest as follows:

Ĉ(ξ,x, t) = Mk(ξk, C(ξ,x, t), u(ξ)) (43)

where C is the solution field updated by the function Mk to become Ĉ; u is the auxiliary stochastic field
(can be a temporal-spatial field) to be used in the local solver; and x and t are the spatial and temporal
dimensions, respectively. Thus, in a multi-component environment, a number of these modules may be
connected and represented by a directed graph to describe the order these modules are to be executed within
a time step. Note that both C and Ĉ is a function of the global set of random variables ξ, not just the local
ones in each module. This is critical, since the goal is to propagate global uncertainties.

To make our discussion concrete, we explain our framework within the context of two linearly coupled
modules. Using operator-splitting, we assume that the full multi-physics model has been decomposed into
two modules that work in concert to update the state from time t to t+ 1:

Ĉt+1/2(ξ,x, t) = M1(ξ1, C
t(ξ,x, t), u(ξ))

Ĉt+1(ξ,x, t) = M2(ξ2, C
t+1/2(ξ,x, t), u(ξ) (44)

where M1 and M2 are the respective solvers for modules 1 and 2, and ξ1 and ξ2 are their respective internal
random variables such that ξ = {ξ1, ξ2}. Eq. (44) reflects the status quo where the UQ treatment at each
module has to deal with the entire uncertainty profile corresponding to all random variables in the system.
Since ut+1/2(x, ξ), the partial solution from M1, is fed directly into M2, changes introduced in M1 will need
to be reflected in M2. This is because both M1 and M2 require knowledge of the global stochastic space ξ.
For example, if one adds a new variable to M1, this new variable will be part of ξ, and thus M2 will need to
be modified to handle the new ξ that has been augmented with the new variable.

We now introduce a new framework, the modulary hybrid framework, where changes inM1 will not impact
the M2’s implementation (and vice versa). The key is in making each module “self-inclusive” via the use of
inter-module operators that translates each module’s local information into a common format that can be
understood by all modules. Let’s assume that M1 has a PCE-based solver and M2 has a sampling-based
solver. Furthermore, let’s consider a PCE representation as the common format for the solution, so each
module’s partial solution will be expressed as:

u∗(x, ξ) =

Q
∑

i=0

ui(x)Ψi(ξ) (45)

where (Q+ 1) is the number of PCE coefficients as defined in Eq. (6).
Our algorithmic goal is to develop techniques that require modules with intrusive UQ schemes to prop-

agate uncertainties with respect to only the local random variables (ξk) and the hybrid UQ framework will
handle the transfer between local and global stochastic space. If only deterministic solvers are available in
a module, our hybrid UQ framework will provide non-intrusive UQ capabilities to propagate uncertainties
so that module developers are relieved of the chores to incorporate UQ capabilities in their modules. This
concept is in contrast to Eq. (43) which implies that global uncertainties (ξ) must be propagated even
in module k. Towards this end, we introduce the restriction and prolongation operators. The restriction
operator maps information from the global uncertain parameter space ξ to the module’s local parameter
space ξk. The prolongation operator does the inverse mapping from the module’s local parameter space ξk

back to the global uncertain parameter space ξ. As such, these operators are specific to the UQ method
embedded in a given module. For linearly coupled modules with intrusive polynomial chaos method, we can,
without any loss of information, decompose each module’s updates into independent subproblems that can
be solved in parallel. In other words, we can write:

u∗(x, ξ) =

nk∑

i=1

PkiM̂ki(ξk, Rkiu(x, ξ)) (46)
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where Rki and Pki are restriction and prolongation operators for module k’s subproblem i, and nk is the
number of subproblems. We use the solver M̂ki to ensure only local uncertainties are propagated within
module k.

For PCE-based modules, the implementation of Rki and Pki depends on whether the modules are coupled
linearly or nonlinearly. Recall that p is the PCE polynomial order, m is the number of random variables in
ξ, and mk is the number of internal random variables in ξk. For the linear case, the number of independent
subproblems will be nk = (m − mk + p)!/((m − mk)!p!) (proof given in the next subsection). In each of
these subproblems, Rki and Pki are analogous to the “scatter” and “gather” operations, respectively. For
the nonlinear case, the construction of Rki and Pki are algorithmically more complex. A feasible approach
would be to use sampling in conjunction with PCE, in particular, apply sampling to the external variables
so that the PCE representations of the nonlinear coefficients for each sample point are expressed only in
terms of the internal variables to the module at hand. The nonlinear case will be further outlined in 4.5.

For sampling-based modules, the treatment is the same for both linear and nonlinear cases. In this
setting, M̂ki is simply a deterministic solver for a fixed sample ξ and nk is the sample size. Rki maps u(x, ξ)
onto a single point (can think of it as a delta function) in the random parameter space, and Pki transforms
the results back to polynomial coefficients in the PC space in a fashion analogous to polynomial regression.

Developing this hybrid UQ framework requires a software infrastructure that provides building blocks,
such as the Rki’s and Pki’s for different scenarios, and thus permit reuse for different applications. The
objective of this framework design is to enable independent module development while preserving the ability
to propagate global uncertainty. We have implemented a prototype of this framework.

It should be noted that, in order to propagate uncertainties from one module to another without mutual
interference (in the design and implementation for individual modules), a common uncertainty representation
is needed. In our current study and without a loss of generality, we have selected the Legendre polynomial
chaos expansion as the common representation. With this selection, each stochastic dependent random
variable is characterized by a vector of polynomial chaos coefficients. There are two advantages to this choice
(polynomial chaos and specifically, Legendre PCE): (1) variance-based sensitivity information are propagated
in addition to uncertainties; and (2) the mathematical complexity can be greatly reduced by having a single
chaos expansion and yet re-analysis of the model output uncertainties with different probability distributions
of the stochastic variables is computationally inexpensive. A potential problem with this representation,
however, is that it does not handle large nonlinearities and discontinuities (nonlinear/discontinuous behaviors
in the stochastic variable space) well due to inherent smoothness assumptions for low-order PCE-based
methods. In addition, this representation also suffers from the curse of dimensionality, namely, that the
computational complexity grows exponentially with the total number of stochastic variables. These issues
will be addressed in later sections.

4.3. Non-intrusive Methods for Modular Uncertainty Propogation

Given the input stochastic solution field C(ξ,x, t), the auxiliary field u(ξ); and a deterministic solver
Fk(x, t, C(x, t)), module Mk (not the same as Fk) advances the stochastic solution to become Ĉ(ξ,x, t).
This involves, at time ti,

1. generating a sample of size Nk (which should be larger enough to enable reconstruction of stochastic
information) for ξ in the parameter space;

2. evaluating the sample on C(ξ,x, ti) and u(ξ) to produce initial conditions for each simulation;

3. running the Nk deterministic simulations with the sample points and the initial conditions; and

4. collecting the solver outputs and using regression techniques to compute new PCE coefficients Ĉ(ξ,x, ti).

In mathematical notation, this process can be described by:

Ĉ(ξ,x, t) =

Nk∑

i=1

PkiFk(ξk = ξki, RkiC(ξ,x, t), Rkiu(ξ)) (47)

where Rki evaluates the given PCE representation at the i-th sample point (which are drawn using collocation
or design of experiments such as quasi-Monte Carlo or Latin hypercube); and Pki, i = 1, · · · , Nk corresponds
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to using Legendre regression (projection onto the Legendre bases or least-squares) to reconstruct the PCE
coefficients. To use the least-squares approach, we first have the Legendre polynomial equation, say, of third
order:

Y = L0 +

m∑

i=1

αiL1(ξki) +

m∑

i=1

m∑

j≤i

αijL2(ξki, ξkj) +

m∑

i=1

m∑

j≤i

m∑

l≤j

αijlL3(ξki, ξkj , ξkl) + ǫ (48)

where Li(∗)’s are Legendre polynomial of i-th order involving the random variables (∗); αk’s, αkj ’s, and
αkjl’s are the regression coefficients to be determined, and ǫi is the regression error. Subsituting the sample
to this equation gives rise to N equations which can be expressed in matrix form as:

Y = Lα + ǫ (49)

where L is a N × ((m + 2)(m+ 1)/2) matrix where α consists of all αi’s, αij ’s, and αijl’s. Minimizing the
2-norm of the discrepancies ǫ is equivalent to applying the least-squares approach so that

LT Lα = LT Y (50)

giving
α = (LT L)−1LT Y . (51)

The reconstructed PCE coefficients α are then propagated to the next module.

4.4. Intrusive Methods for Linear or Linearly Coupled Modules
As alluded to previously, for the linear case, it is possible to decompose a PCE-based module’s compu-

tation into parallel, independent subproblems. Here, we present a theoretical property for linearly coupled
equations that validates this decomposition. This property is significant in that it demonstrates that our
“separability” of uncertainty treatment preserves the “global” nature of uncertainty propagation. Thus, this
property legitimizes the “plug-and-play”-motivated approach to uncertainty propagation, that is, a code de-
veloper for a PCE-based intrusive module need not be concerned about random variables related to external
modules.

Theorem 1: suppose the function Fξ1
: X (ξ1, ξ2) → X̂ (ξ1, ξ2) is a linear map from X (ξ1, ξ2) to

X̂ (ξ1, ξ2), and is p times differentiable at ξ1 = 0 where ξ1 and ξ2 are independent random variables. Let
X (ξ1, ξ2) and X̂ (ξ1, ξ2) both have PCE representation with order p. Then, the evaluation of F can be
decomposed into p+ 1 independent subproblems. A given subproblem k involves the PC terms of X(ξ1, ξ2)
and the PC terms of X̂(ξ1, ξ2) that correspond only to the kth order in ξ2.

Proof: Let the PC representation of X(ξ1, ξ2) be:

X (ξ1, ξ2) =

p
∑

j=0

p−j
∑

i=0

Xijψi (ξ1)ψj (ξ2) (52)

where ψi(ξ1) and ψj(ξ2) are the Legendre polynomials of degree i and j for ξ1 and ξ2; and similarly, let the

PC representation of X̂(ξ1, ξ2) be:

X̂ (ξ1, ξ2) =

p
∑

k=0

p−k
∑

l=0

X̂klψk (ξ1)ψl (ξ2) (53)

where Ψk(ξ1) and Ψl(ξ2) are the Legendre polynomials of degree k and l for ξ1 and ξ2.
Then, the coefficients X̂kl’s can be computed by:

X̂kl =

∫

R

∫

R

Fξ1
(X(ξ1(θ), ξ2(θ)))ψk(ξ1(θ))ψl(ξ2(θ))P (ξ1, ξ2)dξ1dξ2. (54)

Since the operator Fξ1
is linear, it can be decomposed into:

Fξ1
(X (ξ1(θ), ξ2(θ))) = Fξ1





p
∑

j=0

p−j
∑

i=0

Xijψi (ξ1(θ))ψj (ξ2(θ))





=

p
∑

j=0

Fξ1

(
p−j
∑

i=0

Xijψi (ξ1(θ))ψj (ξ2(θ))

)

. (55)
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Substituting this into Eq. (54), we obtain:

X̂kl =

p
∑

j=0

∫

R

∫

R

Fξ1

(
p−j
∑

i=0

Xijψi (ξ1(θ))ψj (ξ2(θ))

)

ψk(ξ1(θ))ψl(ξ2(θ))P (ξ1, ξ2)dξ1dξ2. (56)

Since Fξ1
does not depend on ξ2 (i.e., Fξ1

is random only in ξ1), the terms in the summation corresponding
to j 6= l will vanish giving the following simplified form:

X̂kl =

∫

R

∫

R

Fξ1

(
p−l
∑

i=0

Xilψi (ξ1(θ))

)

ψl (ξ2(θ))ψk (ξ1(θ))ψl (ξ2(θ))P (ξ1, ξ2)dξ1dξ2 (57)

=
〈
ψ2

l

〉
∫

R

Fξ1

(
p−l
∑

i=0

Xilψi (ξ1(θ0)

)

ψk (ξ1(θ))P (ξ1)dξ1. (58)

It can be observed from Eq. (58) that computing X̂kl only depends on Xil for i = 0 to p− l.
Theorem 2: Suppose the function Fξ1

: X(ξ1, ξ2) → X̂(ξ1, ξ2) is a linear map from X(ξ1, ξ2) to

X̂(ξ1, ξ2), and is p times differentiable at ξ1 = 0 where ξ1 and ξ2 are independent random variables with
respective dimensions m1 and m2. Let X(ξ1, ξ2) and X̂(ξ1, ξ2) both have polynomial chaos (PC) repre-
sentations with order p. Then, the evaluation of F can be decomposed into (m2 + p)!/ (m2!p!) independent
subproblems. A given subproblem k involves the PC terms of X(ξ1, ξ2) and the PC terms of X̂(ξ1, ξ2) that
correspond only to the kth term in the single-index PC representation of ξ2).

Proof: without loss of generality, let ξ2 = {ξ1, . . . , ξm2
}, ξ1 = {ξm2+1, . . . , ξm2+m1

}, where m1 +m2 = m.
Let’s consider the last term of a multi-dimensional PC representation of X (ξ1, ξ2) be:

p
∑

j1=1

· · ·
jm2−1
∑

jm2
=1

· · ·
jm−1∑

jm=1

Xj1···jm
Ψ (ξ)

=

p
∑

j1=1

· · ·
jm2−1
∑

jm2
=1

· · ·
jm−1∑

jm=1

Xj1···jm
ψj1 (ξ1) · · ·ψjm

(ξm) (59)

where we omit the index of Ψ (ξ).
Similarly, let the general term of a multi-dimensional PC representation of X̂ (ξ) be:

p
∑

i1=1

· · ·
im2−1
∑

im2
=1

· · ·
im−1∑

im=1

X̂i1···im
Ψ (ξ)

=

p
∑

i1=1

· · ·
im2−1
∑

im2
=1

· · ·
im−1∑

im=1

X̂i1···im
ψi1 (ξ1) · · ·ψim

(ξm) (60)

Then, the coefficients X̂i1···im
’s can be computed by:
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X̂i1···im
=

∫

Θ

Fξ1
(X(ξ1 (θ) , ξ2 (θ)))ψi1 (ξ1 (θ)) · · ·ψim

(ξm (θ)) dPr (θ)

=

∫

Ξ

Fξ1
(X(η1,η2))ψi1 (η1) · · ·ψim

(ηm)
m∏

k=1

Prξk
(ηk) dη

=

∫

Ξ

Fξ1
(X(η1,η2))

m∏

k=1

ψik
(ηk)

m∏

k=1

Prξk
(ηk) dη

=

∫

Ξ2

∫

Ξ1

Fξ1
(X(η1,η2))

m1∏

k=1

(ψik
(ηk)Prξk

(ηk)) dη1

m2∏

k=1

(ψik (ηk) Prξk
(ηk)) dη2

=

∫

Ξ2

∫

Ξ1

Fξ1
(X(η1,η2))Ψ1 (η1) dPr (η1) Ψ2 (η2) dPr (η2) (61)

Thus, we obtain

X̂i1···im
=

∫

Ξ2

∫

Ξ1

Fξ1
(

p
∑

j1=1

· · ·
jm2−1
∑

jm2
=1

· · ·
jm−1∑

jm=1

Xj1···jm
Ψ (η))Ψ1 (η1) dPr (η1)Ψ2 (η2) dPr (η2)

=

p
∑

j1=1

· · ·
jm2−1
∑

jm2
=1

∫

Ξ2

∫

Ξ1

Fξ1
(

jm2∑

jm2+1
=1

· · ·
jm−1∑

jm=1

Xj1···jm
Ψ (η))Ψ1 (η1) dPr (η1)Ψ2 (η2) dPr (η2)

=

m2∏

k=1

〈
ψ2

ik

〉
∫

Ξ1

Fξ1
(

jm2∑

jm2+1
=1

· · ·
jm−1∑

jm=1

Xi1···im2
···jm

Ψ1 (η1))Ψ1 (η1) dPr (η1) (62)

Hence, the equation above holds the multi-dimensional PC representation ofX (ξ1, ξ2). It can be observed
that the total number of independent problems is

m2∑

k=1

p
∑

i1=1

· · ·
ik−1∑

ik=1

=
(m2 + p)!

m2!p!
. (63)

Furthermore, each given subproblem k involves the

(m1 + k + p)!

m1! (p− k)!
(64)

number of PC terms of X(ξ1, ξ2) and the
(m2 + k)!

m2!k!
(65)

number of PC terms of X̂(ξ1, ξ2) that correspond only to the kth term in the single-index PC representation
of ξ2. �

Corollary: for the linear problem, we obtain that

(m1 +m2 + p)!

(m1 +m2)!p!
=

p
∑

k=0

[
(m1 + p− k)!

m1! (p− k)!

] [
(m2 + k − 1)!

(m2 − 1)!k!

]

(66)

Alternatively, the identity above can be verified by Rothe-Hagen Identity as follows:

n∑

k=0

x

x+ kz

(
x+ kz
k

)
y

y + (n− k) z

(
y + (n− k) z

n− k

)

=
x+ y

x+ y + nz

(
x+ y + nz

n

)

(67)

Proof: Let z = 1, n = p, x = m2, y = m1 + 1 in the Rothe-Hagen Identity. �
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As opposed to pure intrusive PCE, the intrusive PCE module in a hybrid framework needs to be for-
mulated in the larger context of the entire multi-physics system. Specifically, there are random variables in
the system that are external to this module. Let Mk be an intrusive PCE module with its internal random
variables ξk, then the external variables are ξ \ ξk. Since the goal of the hybrid framework is to hide the
presence of non-local random variables in the incoming solution field (that is, the local solver should only
need to advance the effect of local random variables) without sacrificing the global uncertainty propagation
property, Mk needs to perform additional processing (for example, projection of the incoming field to the field
involving only the local random variables) before and after calling the user-implemented local PCE solver.
For linear problems (meaning that the discretization matrix does not depend on stochastic terms involving
random variables external to the module), we show through a decomposition property that the additional
processing involves operations analogous to scatter-and-gather. These operations can be represented by:

Ĉ(ξ,x, t) =

p
∑

i=0

PkiFki(ξk, RkiC(ξ,x, t), Rkiu(ξ)) (68)

where Rki is the projection (scatter) operator onto order i, Fki is the PCE solver of order i, and Pki is
the corresponding prolongation (gather) operator. These generic operators can be built into the hybrid UQ
computational infrastructure.

We use the following example to illustrate these operations. Suppose a second-order (p = 2) PCE is
used and full system has 2 random variables with one internal to the intrusive PCE module (ξ1), then the
system PCE representation of the incoming solution has (P + 1) = (2 + 2)!/(2!2!) = 6 terms to capture
the overall uncertainties. However, the user-provided PCE solvers (Fki’s) has only the knowledge of their
internal variables, which should have (P + 1) = (1 + 2)!/(1!2!) = 3 permutation terms. How do we bridge
the mismatch between the internal and external uncertainty representations. For linear problems, it suffices
to break up the incoming solution into 3 subproblems, each corresponding to a different permutation in the
external random variables (see Table 1 below).

Table 1: Partition of PCE Permutation Into 3 Sub-problems

Internal Variable External Variable Sub-problem
0 0 0
1 0 0
0 1 1
2 0 0
1 1 1
0 2 2

Hence, the processing steps for this module are:

1. partition C(ξ, · · · ) into 3 parts (sub-problem 0, 1, and 2),

2. solve sub-problem i by Fki corresponding to the user-provided PCE solver of order i, and

3. gather the solution from each sub-problem back to form Ĉ(ξ, · · · ) (6-term).

A key computational kernel for this module is the solver for the linear systems arising from discretization of
the stochastic equations, assuming that the physics for this module is governed by some partial differential
equations that can be solved efficiently by fast matrix equation solvers. In the following we present a fast
linear solver algorithm for stochastic matrices from using polynomial chaos expansions. In [37], Sousedik,
Ghanem, and Phipps showed that the stochastic matrices exhibit a special nonzero block structure that
facilitates a hierarchical decomposition. As such, the global matrix Ap of PCE order p can be represented
by

Ap =

[
Ap−1 Bp

Cp Dp

]
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where Dp is a block diagonal matrix that can be easily parallelized, and Ap−1 is the corresponding global
matrix of polynomial order p− 1. Hence, Ap can also be represented hierarachically by

Al =

[
Al−1 Bl

Cl Dl

]

, l = p, · · · , 1.

This hierarchical structure can be exploited in designing efficient solver algorithms. Specifically, it enables a
construction of the hierarchical preconditioner Mp:

Ap ≈Mp =

[
Mp−1 Bl

Cl Dl

]

where Ml, l = 1, · · · , p − 1 are obtained from the corresponding Al with the (1, 1) block replaced by Ml−1

except for M0 = A0. Several options are available for designing the preconditioners. While Sousedik el al.
presented a Schur complemented-based preconditioner, an alternative preconditioning algorithm based on
block Gauss Seidel is given below:

Algorithm 1 (Hierarchical Block Gauss Seidel) up = M−1
p zp

for l = p, · · · , 1
Let zl = [(zl−1

l )T (zl
l)

T ]T and ul = [(ul−1
l )T (ul

l)
T ]T , then zl−1 = zl−1

l −Blu
l
l.

end for
u0 = M−1

0 z0
for l = 1, · · · , p

ul
l = D−1

l (zl
l − Clu

l−1
l )

end for

The most time-consuming operation in this algorithm is the inversion (D−1
l ). Fortunately, Dl is block

diagonal (each block is analogous to the discretized matrix of a different partial different equation) which
can be solved efficiently in parallel.

There is an additional efficiency gain of employing this hierarchical structure to the matrix solution in
our intrusive PCE module. As described previously, during an intrusive PCE solve, the global problem is
partitioned into p+ 1 subproblems, each corresponding to a different polynomial order. It is clear from the
hierarchical structure that the subproblems of lower polynomial orders are principal submatrices of the those
of the higher polynomial orders. As such, we can coalese these solves for higher efficiency and lower matrix
storage resulting in the following modified algorithm:

Algorithm 2 (Modified Hierarchical Block Gauss Seidel for Ul = M−1
l Zl, l = 0, · · · , p)

Let Yp = Zp and Vp = Up

for l = p, · · · , 1
Split Yl = [(Y l−1

l )T (Y l
l )T ]T and Vl = [(V l−1

l )T (V l
l )T ]T

Update Y l−1
l = (Y l−1

l −BlV
l
l )T ].

Coalesce Yl−1 = [(Y l−1
l )T ZT

l ]T .
end for
Mean solve: V0 = A−1

0 Y0

Un-coalesce: split V0 into U0 and V 0
1 .

for l = 1, · · · , p
V l

l = D−1
l (Y l

l − ClV
l−1
l )

Un-coalesce: split Vl into Ul and V l
l+1.

end for

In this algorithm, Zp and Up are such that MpUp = Zp for the p-order subproblem. The first loop first
splits both Yp = Zp into two parts corresponding to the right hand sides of the p-th order as well as the
(p-1)-th or lower orders. The same splitting is applied to Vp = Up. The part corresponding to the lower order
data is updated and then combined with the data Zp−1 (right hand sides of the subproblem for polynomial
order p− 1). The combined information are transferred to the next level (lower order) for similar processing
until l = 0. At this point, Y0 has the updated information from all subproblems. This multiple right hand
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side problem is solved (A0V0 = Y0) and the processing steps are performed in the reverse direction (increasing
order). It can be seen that the lower order solves (Dl and A0) benefit from fast solvers for multiple right
hand sides. In addition, efficiency improvement is expected since now BlV

l
l and ClV

l−1
l are matrix-matrix

multiplications instead of matrix-vector multiplications.

4.5. Intrusive Methods for Nonlinear or Non-linearly Coupled Modules

Since non-intrusive sampling is trivially applicable for both linear and nonlinear equations, we will focus
on intrusive PCE within our modularly hybrid framework. The methodology for propagating global uncer-
tainty through PCE-based modules with nonlinear partial differential equations, as opposed to those with
linear equations, requires generating a sample with the random variables external to the modules and running
the sample on the user-provided stochastic nonlinear solver. This amounts to conditional evaluation of the
global uncertainty representation with respect to external random variables. In other words, each sampled
value of the external variables is used to construct a set of PCE coefficients with respect to the internal
random variables. Hence, each subproblem corresponds to an independent evaluation of PCE terms. So if
there are nk sampled values of the external random variables, then we will end up with nk sets of “partial”
PCE coefficients, which are then assembled to recover the global uncertainty representation. Here, nk needs
to be sufficiently large to allow for unique reconstruction of the global representation. In summary, Rki

corresponds to the restriction of PCE format to the internal variables by sampling the external variables,
and Pki corresponds to the global PCE reconstructions from the partial PCE representations.

For nonlinear problems (that is, coefficients of the local equations are also functions of random variables
external to the module), the same decomposition property for linear problems does not apply and neither
are the simple scatter-gather operations. Nonetheless, generic projection and prolongation operators can be
formulated based on the familiar mathematical representation:

Ĉ(ξ,x, t) =

Nk∑

i=1

PkiFk(ξk, RkiC(ξ,x, t), Rkiu(ξ)). (69)

Here Rki is the partial sampling operator onto the external random variables while leaving the information
with respect to the internal random variables in the PCE space. We thus call this “conditional” PCE
corresponding to partial evaluation of polynomial chaos expansions. Fk is the user-provided PCE nonlinear
solver of order p. Note that, unlike the linear case, all instances (sample points) are now solved using the p-th
order PCE solver. Pki is a prolongation operator combining all Nk instances back into the original format.
This operation involves Legendre regression similar to those in the non-intrusive module but restricted only
to the external random variables (partial reconstruction). Hence, this module can be viewed as a combination
of non-intrusive and linear PCE operations. The processing steps for this module are:

1. generate N global sample points on all the random variables ξ;

2. restrict Nk local sample points from the external random variables ξ \ ξk;

3. perform partial evaluation of C(ξ, · · · ) and u(ξ) on the sample local Nk sample points;

4. propogate uncertainty of the all Nk instances via user-provided conditional PCE nonlinear solver of
order p;

5. use Legendre regression to partially reconstruct PCE coefficients for the external random variables
ξ \ ξk

Finally, we combine all Nk instances back into the original global PCE format for Ĉ(ξ,x, t). Unlike the linear
module that can exploit the decomposition property and the fast solvers, here each of the Nk instances are
independently discretized and solved from each other. The derivation of “conditional” PCE reconstruction
is straightforward and thus not to be included here.
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4.6. Semi-intrusive Methods for Linear or Nonlinear Modules

Given the input stochastic solution field C(ξ,x, t), the auxiliary field u(ξ); and a derivative-based solver
which computes Fk(x, t, C(x, t)) as well as its derivatives ∂Fk

∂ξkj
; j = 1, · · · ,mk; module Mk advances the

stochastic solution to become Ĉ(ξ,x, t) such that

Ĉ(ξ,x, t) =

Nk∑

i=1

PkiF k(ξk = ξki, RkiC(ξ,x, t), Rkiu(ξ)) (70)

where F k is a vector of functions comprising Fk(x, t, C(x, t)) and ∂Fk

∂ξkj
; j = 1, · · · ,mk; Rki, same as in the

non-intrusive case, evaluates the given PCE representation at the i-th sample point; and Pki, i = 1, · · · , Nk

corresponds to using regression to reconstruct the PCE coefficients. The equations have been given previously
as in Eqns (14) and (18).

There is an additional consideration in the propagation of uncertainties through this module. Specifically,
for reason of simplication, we leave out u(ξ) and also the spatial and temporal notations. Then,

∂Fk(ξk, C(ξ))

∂ξkj

=
dFk(ξk, C(ξ))

dξkj

+
dFk(ξk, C(ξ))

dC(ξkj)

dC(ξkj)

dξkj

. (71)

Here the first term and the first part of first part of the second term on the right hand side are calculated
by the user-provided semi-intrusive solver, while the second part of the second term is to be computed by
the hybrid computational framework by computing the derivatives of the solution field with respect to the
random variables.

4.7. Stochastic Coupling

Let ξ = {ξ1, ξ2, ξ3, ξ4} be a set of random variables uniformly distributed in some stochastic space Ξ in
the following system of equations:

u1(ξ) = f11(ξ1, u1, u2) + f12(ξ2, u1, u2)

u2(ξ) = f21(ξ3, u1, u2) + f22(ξ4, u1, u2) (72)

where fij ; i, j = 1, · · · , 2 are stochastic functions; and let u1(ξ) and u2(ξ) be the corresponding stochastic
solution fields. Suppose that, after proper discretization, we obtain the following linear system:

[
F11(ξ1) F12(ξ2)
F21(ξ3) F22(ξ4)

] [
U1(ξ)
U2(ξ)

]

=

[
B1(ξ)
B2(ξ)

]

where Bi; i = 1, 2 are some right hand sides that are also functions of all the random variables ξ.
In the following we show how to solve this coupled system using hybrid UQ.
Let F11 and F12 be modules equipped with linear or non-linear intrusive UQ methods; and F21 and F22

with non-intrusive UQ methods. Two possible ways of solving this system:

1. Iterate on the following system:

[
F11(ξ1) 0

0 F22(ξ4)

] [
Un+1

1 (ξ)
Un+1

2 (ξ)

]

=

[
B1(ξ)
B2(ξ)

]

−
[

0 F12(ξ2)
F21(ξ3) 0

] [
Un

1 (ξ)
Un

2 (ξ)

]

where n is the iteration index.

2. Apply iterative solver for the entire system and use the block diagonal matrix as the preconditioning.

In both cases, we will have to create four stochastic modules within the hybrid UQ framework where
F11 and F12 will be using the linear or non-linear intrusive module, while F21 and F22 will be using the
non-intrusive sampling module. Case 1 above will involve a ‘solve’ operation for F11 and F22, and a ‘matvec’
(matrix vector multiply) for F12 and F21. For case 2, additional ‘matvec’ operations are needed for F11 and
F22. Both cases can be captured well by our hybrid UQ framework.
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4.8. Applicability to Modules with High Dimensions (With Correlated Inputs)

Our modularly hybrid framework can also be applied to multi-physics stochastic equations involving
spatially distributed random parameters (i.e., x with spatial dependence). To do so, we would simply
need another specialized module whose solver is equipped to handle uncertainty propagation for spatially
distributed random parameters. In principle, spatial dependence increases the dimensionality of the random
variable space, so our concepts of hybrid modularization (i.e., subproblem decomposition, restriction and
prolongation) naturally apply to the spatial case as well. In essence, a spatial module can be construed as
a high-dimensional linear module. To address the issue of high dimensionality, Kahunen-Loeve expansion
(KLE) [38, 39] can be leveraged to de-correlate the spatial process for dimension reduction. KLE has the
attractive property that the mean-square error introduced by truncating the expansion is minimized. In
addition, one can also decide on the number of terms to truncate based on an acceptable threshold for the
total variance of the truncated expansion. For these reasons, KLE has been widely applied to problems
involving spatial heterogeneity, and is becoming more prevalent in environmental applications involving
subsurface flow problems [40, 41, 42, 43, 44]. An application example will be given later in this report.

4.9. Dimension Reduction in General Settings

As with all PCE-based methods, our hybrid UQ methodolgy also suffers from the ‘curse-of-dimensionality’
problem. As such, we also investigate possible strategies for dimension reduction (DR). The previous section
addresses high dimensionality induced by correlated random field, for which methods based on singular value
decomposition suffice. For input spatial process with relative low correlation length, the dimensionality of
the random input represented by the truncated KLE can be very large. To deal with the “curse of dimen-
sionality”, we apply non-parametric screening method [45] to efficiently identify the most sensitive random
variables for truncated KLE with many random variables. Other dimension-reduction techniques have been
Other dimension-reduction techniques have been proposed, such as (1) multi-element, generalized polyno-
mial chaos [46]; and (2) decomposition methods motivated by analysis of variance (ANOVA) techniques [47]
and used for high-dimensional UQ problems in [48, 49].

Since our hybrid UQ methodology facilitates the propagation of not just the uncertainty, but also global
sensitivities (Sobol’ indices), we may be able to reduce uncertain parameter dimension dynamically by
examining the global sensitivity information of each parameter so that parameters with small Sobol’ index
are candidates for removal. Alternatively, two subsets of parameters that have no coupling terms can be
treated more efficiently by decoupling them. This scheme, however, is at best heuristic, since an insensitive
parameter at a certain time step may become sensitive in future time steps. Nevertheless, equipped with
expert judgment in the course of simulation, this may be a viable approach.

4.10. Bayesian Calibration

Uncertainty analysis begins with a prescription of probability distributions (called ‘priors’) of the un-
certain parameters. Samples are drawn from these priors and propagated through the simulation models
to produce an ensemble of model outputs for analysis. These output statistics are often compared against
results from physical experiments, which can help ‘correct’ the priors using a technique called Bayesian
inference after Bayes. The Bayes’ rule says that

π(θ|D) ∝ P (θ)L(D|θ) (73)

where P (θ) is the prior distribution, L(D|θ) is called the likelihood function, and π(θ|D) is the posterior
distribution describing how the input ‘priors’ have been modified in view of the observational data.

Bayesian inference is thus an inverse operation analogous to numerical optimization, only that it pro-
vides more informative optimization results as they generate posterior distributions for the input parameters
instead of a single (or a few) optimal input points. However, this advantage comes with additional computa-
tional cost, usually requiring thousands of function evaluations in its Markov Chain Monte Carlo (MCMC)
iterations. As such, this method is mostly used with response surface models rather than directly with the
simulators.

As mentioned above, two pieces of information are needed to set up and run Bayesian inferences: ¶(θ)
and L(D|θ); and the latter is derived by a function in terms of some discrepancy metric between simulation
and data. A popular likelihodd function is:

L(D|θ) = NL exp(−E) (74)
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where E is some discrepancy function andNL is the normalization factor. To compute E at different locations
in the parameter space, many function evaluations may be needed. In the context of our hybrid framework,
E can be estimated inexpensively by probing the ‘polynomial’ response surfaces in PCE representation,
which are readily available from the module outputs at every time step. We demonstrate this analysis in our
numerical study section.

5. A Computational Framework for Hybrid UQ Methods

The mathematical operations for our hybrid UQ framework can be encapsulated in a generic computa-
tional framework. In this section, we summarize the capabilities needed in each type of modules. We then
discuss the design of a software infrastructure for hybrid UQ.

5.1. Basic Operators in Modules

The basic components in each module are Rki and Pki.

1. Non-intrusive Methods for Modular Uncertainty Propogation

Rki: This corresponds to generating a sample for all random variables in the system. Sampling designs
available are Latin hypercube and quasi-Monte Carlo. This operator involves evaluating the
incoming field C(ξ) at the sample points.

Pki: This corresponds to least-squares regression given in Eqn (48 or collocation to reconstruct Ĉ(ξ).

2. Intrusive Methods for Linear or Linearly Coupled Modules

Rki: This corresponds to scattering the incoming field C(ξ) into PCE solvers of different orders (i’s).

Pki: This corresponds to gathering the solutions from PCE solvers of different orders to reconstruct
Ĉ(ξ).

3. Intrusive Methods for Nonlinear or Non-linearly Coupled Modules

Rki: This corresponds to first generating a sample for only the random variables external to the current
module. The incoming C(ξ) is then evaluated partially at the sample points and the “reduced”
PCE (only expressed in local random variable space) are created.

Pki: This corresponds to least-squares regression given in Eqn (48 only for the random variables ex-
ternal to the module.

4. Semi-intrusive Methods for Linear or Nonlinear Modules

Rki: This corresponds to generating a sample for all random variables in the system. Sampling designs
available are Latin hypercube and quasi-Monte Carlo. This operator involves evaluating the
incoming field C(ξ) at the sample points.

Pki: This corresponds to a special least-squares regression given in Eqn (48 and (18. In additon, since
the user-provided derivative-based solver only computes part of the total derivative (Eqn (71),
additional processing is needed to append the needed terms.

5.2. Hybrid UQ Software Infrastructure

In this section we give a brief description of the software framework to capture the features of the hybrid
computational framework. There are four basic modules in the framework:

1. ModuleSampling,

2. ModuleLinPCE,

3. ModuleNonLinPCE, and
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Figure 2: Hybrid UQ Software Infrastructure.

4. ModuleDerivative

all of which inherit from an abstract ModuleBase class. Each module is characterized by seven functions:� a constructor,� a destructor,� a ‘setup’ function,� a ‘solve’ function,� a ‘matvec’ function,� a ‘setParam’ function (for setting internal parameters), and� a ‘setSolver’ function for setting the user-provided solvers.

The Rki and Pki operators are embedded in the ‘setup’ and ‘solve’ functions. An example of a user
program using the non-intrusive module is as follow:

int nRVs=2, pOrder=2;

PCEPermutations pcePerms;

PCEDataStreams VecPD;

ModuleSampling Module;

SolverContext Context;

UserSampling *userSolver = new UserSampling();

sparam = "nRVs 2"; Module.setParam(sparam);

sparam = "pOrder 2"; Module.setParam(sparam);

sparam = "setRV 1"; Module.setParam(sparam);

sparam = "setRV 2"; Module.setParam(sparam);
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Module.setSolver((UserSamplingBase *) userSolver);

pcePerms.genPermutationTable(nRVs, pOrder);

nPerms = pcePerms.numPermutations();

VecPD.resize(nPerms, 2);

//**/ set values for the incoming field VecPD

Module.setup(VecPD, Context);

Module.solve(VecPD, Context);

6. Numerical Study

In this section we demonstrate the application of hybrid UQ to a few example problems. We begin with a
two-module reactive transport solver comprising two modules: intrusive transport and non-intrusive reaction.
The second example is a three-module flow-reactive-transport solver for showing dimension reduction of a
random field. The third example is a simple predator-prey model to demonstrate the non-linear intrusive
UQ capability in our hybrid framework. The fourth example is a more realistic non-linear spring model
decomposed into two modules. The fifth example is a non-linear cuopled contaminant flow solver. The final
example demonstrates the use of Bayesian inference on one of our reactive transport examples.

6.1. Two-dimensional Reactive Transport in Isotropic and Homogeneous Medium

In this section, we demonstrates how our proposed framework can be used in the UQ analyses of sequential
multi-step transport reaction modules.

Sequential multi-step reaction models are central to the understanding of various biologic and chemical
processes that occur in the subsurface [50, 51]. For example, during denitrification (process used to remove
nitrogen from sewage and wastewater), nitrate reacts to produce nitrite, and subsequently ammonia or nitro-
gen gas [52]. Similarly, reductive anaerobic degradation of tetrachloroethylene (common soil contaminant)
to trichloroethylene, to dichloroethylene, and eventually to vinyl chloride, may be modeled using a sequential
first-order degradation kinetic model [53]. Being able to apply UQ on these types of sequential multi-step re-
action models has tremendous potential to facilitate assessment and control of various biochemical processes
that greatly impact the environment.

In the latter case, reductive anaerobic degradation falls under the general category of multi-species
reactive transport in porous media, which can be described by the following system of time-dependent
partial differential equations:

Ri
∂ci
∂t

= Dx ∂
2ci
∂x2

+Dy ∂
2ci
∂y2

− vx ∂ci
∂x

− vy ∂ci
∂y

+Ri−1ki−1ci−1 −Rikici, ∀i = 1, 2, . . . , n (75)

where ci [ML−3] is the concentration of the ith species; t is time [T]; vx and vy [LT−1] are the velocity
components for x- and y-direction respectively; Dx and Dy [L2T−1] are the dispersion coefficients for x- and
y-direction respectively; ki is the first-order reaction rate [T−1]; Ri is the retardation factor of the ith species
with R0 = 0; and n is the total number of species. Dividing both sides by Ri, we obtain:

∂ci
∂t

=
Dx

Ri

∂2ci
∂x2

+
Dy

Ri

∂2ci
∂y2

− vx

Ri

∂ci
∂x

− vy

Ri

∂ci
∂y

+
Ri−1

Ri
ki−1ci−1 − kici, ∀i = 1, 2, . . . , n. (76)

In matrix form, the system of multi-species equations can be rewritten as:

∂c

∂t
= Dx ∂

2c

∂x2
+ Dy ∂

2c

∂y2
− Vx ∂c

∂x
− Vy ∂c

∂y
+ Ac (77)

where:

c =
(
c1 . . . cn

)T
,







Dx

Dy

Vx

Vy







=







Dx/R1 . . . Dx/Rn

Dy/R1 . . . Dy/Rn

vx/R1 . . . vx/Rn

vy/R1 . . . vy/Rn






,

(78)

24



and the structure of the matrix A depends on the reaction network [54].
In this work, we apply Eq. (77) to model the sequential first-order network that represents the biodegra-

dation of trichloroethylene (TCE). TCE reacts to produce daughter species, dichloroethylene (DCE), while
DCE further reacts to produce vinyl chloride (VC), and finally VC reacts to produce ethylene (ETH). That
is, there are four species (i.e., n = 4) and the process is depicted as follows:

TCE
l1−→
k1

DCE
l2−→
k2

VC
l3−→
k3

ETH
l4−→
k4

(79)

where li is the yield coefficient of the ith reaction, with li = 1 for unimolecular reactions. Following Eq. (77),
the reaction matrix A for this network has the following form:

A =







−k1 0 0 0
R1

R2
l1k1 −k2 0 0

0 R2

R3
l2k2 −k3 0

0 0 R3

R4
l3k3 −k4






. (80)

To solve Eq. (77), one popular solution approach is to use “operator splitting”, namely, to split the
solution process in two stages to mimic the equation structure which consists of independent transport and
reaction terms. At each time step, the “transport equation” is solved for the species concentration, followed
by the solution of the “reaction equation” solved by an ODE solver. In the special case of sequential networks
with first-order reaction, the reaction equation has an analytical solution [54].

Under operator splitting of Eq. (77), the (vectorized) transport equation is:

∂ct+ 1
2

∂t
= Dx ∂

2ct+ 1
2

∂x2
+ Dy ∂

2ct+ 1
2

∂y2
− Vx ∂c

t+ 1
2

∂x
− Vy ∂c

t+ 1
2

∂y
(81)

which consists of four independent equations, one per species, since Dx, Dy, Vx and Vy are all diagonal
matrices. Then, we apply ct+1/2 (i.e., the solution to Eq. (81)) as the initial conditions to the (vectorized)
reaction equation:

∂ct+1

∂t
= Act+1 (82)

which can be solved analytically [54].
In reactive transport problems, there are many sources of uncertainties. In our model (cf. Eq. (75)), we

treat the following parameters as uncertain: the dispersivities (αx, αy), the velocities (vx, vy), and the first-
order reaction rates ki. The dispersion coefficient can be prescribed as a linear function of dispersivity, i.e.,
Dx = αxvx and Dy = αyvx in the x- and y-direction, respectively. We assume αx, αy, vx, vy and {ki}4

i=1 as
independent second-order random variables. Hence, the uncertainty of the concentration for the first species
involves the uncertain parameters αx, αy , vx, vy and k1. The uncertainty of the concentration for the second
species involves the uncertain parameters αx, αy, vx, k1 and k2. The uncertainty of the concentration for
the third species involves the uncertain parameters αx, αy , vx, vy, k1, k2 and k3. Finally, the uncertainty of
the concentration for the fourth species involves all the uncertain parameters αx, αy, vx, vy, k1, k2, k3 and
k4. While previous works [55, 56] assumed either the transport parameters (αx, αy, vx, vy) or the reactions
parameters ({ki}n

i=1) are uncertain, this work is the first in examining the uncertainties in both transport
and reaction parameters jointly.

6.1.1. Stochastic Galerkin Method for Transport Module

The transport system consists of four transport equations can be independently solved for each species.
Hence, we will discuss the PCE formulation of a generic species’ scalar transport equation. As such, we can
simplify notation by removing both the species and time indexing. Denote x = (x, y) ∈ Ω and the scalar
transport equation becomes:

∂c (x, t)

∂t
=
αxvx

R

∂2c (x, t)

∂x2
+
αyvx

R

∂2c (x, t)

∂y2
− vx

R

∂c (x, t)

∂x
− vy

R

∂c (x, t)

∂y
in Ω (83)

where Ω is an anisotropic two-dimensional domain, with boundary ∂Ω.
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When αx, αy , vx and vy are fixed parameters, Eq. (83) describes a deterministic problem. Its solution
requires solving for the concentration field:

c : (x, t) ∈ Ω × [t0, tf ] 7→ c (x, t) ∈ R. (84)

We consider non-homogeneous Dirichlet conditions and null Neumann boundary conditions over the respec-
tive portions Γd and Γn of the domain boundary ∂Ω = Γd ∪ Γn, i.e., c (x, ·) = cd (x) , x ∈ Γd = ∂Ω and
Γn = ∅, where cd (x, y) is a given function on Γd.

When αx, αy , vx and vy are spatially dependent (i.e., for inhomogeneous domains), there is no exact
solution for Eq. (83). Hence, we reformulate the problem in its weak or variational form so we may apply
approximation methods to compute its solution.

Let V be the set of functionals on Ω such that

V =
{
c ∈ H1

0 (Ω) : c = cd (x) on Γd

}
(85)

where H1
0 (Ω) with Γn = ∅ is the Sobolev space of square-integrable functionals whose first-order derivatives

are also square-integrable. Thus, the problem above can be expressed in the following variational form:
“Find c ∈ V such that

a (c, w) = 0 ∀w ∈ V (86)

where

a (c, w) =

∫

Ω

w (x)
∂c (x, t)

∂t
dx +

1

R

∫

Ω

(

αxvx ∂w (x)

∂x

∂c (x, t)

∂x
+ αyvx ∂w (x)

∂y

∂c (x, t)

∂y

)

dx

− 1

R

∫

Ω

(

vxw (x)
∂c (x, t)

∂x
+ vyw (x)

∂c (x, t)

∂y

)

dx (87)

and w (x) ∈ V is a test (or weighting) function.”
To solve the variational form of the problem, we apply Galerkin finite-element discretization involving

T = {Ωe
k}

η
k=1, a triangulation of Ω with η non-overlapping triangular elements Ωe

k. Locally on each element
Ωe

k, we assume the finite element approximation ch of the functional c ∈ V is linear.
Let N is the set of nodes of the finite-element mesh which are not lying on Γd. Denote Vh as the

finite-element approximation of V from Eq. (85):

Vh = span {Φi}i∈N . (88)

The trial function ch and the test function wh are discretized accordingly:

ch (x, t) =
∑

i∈N

ci (t)Φi (x) ∈ Vh

wh (x, t) =
∑

j∈N

wj (t)Φj (x) ∈ Vh (89)

where Φi (x) is the corresponding shape function associated with the nodes, and ci (t) is the transient nodal
values at nodal point i.

c and w can now be approximated by their respective finite-element counterparts, ch and wh. Substituting
ch and wh into Eqs. (86-87) yields a finite-element approximation of the variational form of the problem:

∑

i,j∈N

(mij ċi + aijci)wj = 0 (90)

where
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mij =

∫

Ω

Φi (x) Φj (x) dx (91)

and

aij =
1

R

∫

Ω

(

αxvx ∂Φi (x)

∂x

∂Φj (x)

∂x
+ αyvx ∂Φi (x)

∂y

∂Φj (x)

∂y

)

dx

− 1

R

∫

Ω

(

vx ∂Φi (x)

∂x
Φj (x) + vy ∂Φi (x)

∂y
Φj (x)

)

dx. (92)

The single term from Eq. (91) can be rewritten as the element matrix Me, and the two terms from Eq. (92)
can also be rewritten as element matrices Ke

1 and Ke
2 respectively (see 8.1 for details). Subsequently, these

element matrices can be assembled into the (full-mesh) global matrices M, K1 and K2.
Using an appropriate indexing of the nodes in N , the finite-element approximation of the variational

form (cf. Eqs. (90-92)) can be rewritten as a set of linear equations for the set of transient nodal values ci
of ch, as follows:

Mċ + Kc = 0 (93)

where K = K1 − K2, and the dimension of c equates to the cardinality of N (i.e., dim (c) = |N |). Here,
dim (c) represents the number of unknowns or degrees of freedom in the finite-element problem.

To solve Eq. (93), we apply the backward Euler method for time integration:

(M + K∆t) ct+1/2 = Mct. (94)

The global matrices M and K, individually of size (|N |×|N |) (because they were assembled from the element
matrices), are very sparse and can be stored compactly. For example, since we used linear triangular elements
in the assembly process, we were able to store these global matrices as (|N | × 7|) matrices.

So far, we have described how to go about solving the deterministic problem (cf. Eq. (83)), in which αx,
αy, vx and vy are assumed fixed. However, in practical applications, αx, αy, vx and vy have uncertainties.
Thus, we proceed to describe how to solve the stochastic version of this same problem, where αx, αy , vx and
vy are assumed to be independent second-order random variables.

By definition, αx, αy, vx and vy are functions of random event θ in an abstract probability space (Θ,Σ, P ):

αx = αx (θ) ; αy = αy (θ) ; vx = vx (θ) ; vy = vy (θ) . (95)

As a result, the solution (i.e., the concentration field c) is also random and satisfies almost surely the
stochastic problem as follows:

∂c (x, θ, t)

∂t
=

αx (θ) vx

R

∂2c (x, θ, t)

∂x2
+
αy (θ) vx

R

∂2c (x, θ, t)

∂y2

− vx (θ)

R

∂c (x, θ, t)

∂x
− vy (θ)

R

∂c (x, θ, t)

∂y
x ∈ Ω (96)

such that c (x, θ, t) = cd (x) , x ∈ Γd = ∂Ω. The random solution c (x, θ, t) lies in the space V ⊗ L2 (Θ, P ),
where ⊗ denotes the Cartesian product, and:

c (·, θ, t) ∈ V , c (x, ·, t) ∈ L2 (Θ, P ) (97)

Here, the deterministic space for the random solution is V (from Eq. (85)) and the stochastic space is
L2 (Θ, P ), the set of second-order random variables.

The stochastic variational formulation of the problem is to find c ∈ V ⊗ L2 (Θ, P ) such that:

A (c, w) = E [a (c, w)] =

∫

Θ

a (c, w) dP (θ) , ∀w (x, θ) ∈ V ⊗ L2 (Θ, P ) (98)
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by taking the expectation of a (cf. Eq. (87)), where w (x, θ) ∈ V ⊗L2 (Θ, P ) is a test (or weighting) function
of random event θ.

Recall the deterministic finite-element space Vh defined in Eq. (88). Similarly, the semi-discrete stochas-
tic solution lies in:

ch (x, θ, t) =
∑

i∈N

ci (θ, t)Φi (x) ∈
(
Vh ⊗ L2 (Θ, P )

)
(99)

(The solution is semi-discrete because we have not yet discretized the stochastic space L2(Θ, P ).) Next, we
apply finite-element approximation to the stochastic variational form of the problem, derived from taking
the expectation of the finite-element approximation of the deterministic variational form given in Eq. (90).
This involves solving for a set of N transient random variables ci (θ, t) that satisfy Eq. (99) for ∀wi (θ) ∈
L2 (Θ, P ) , i ∈ N . This is equivalent to solving for ci (θ, t) that satisfy:

∑

i,j∈N

E [(mij ċi (θ, t) +Aij (θ) ci (θ, t))wj (θ)] = 0 (100)

where
Aij (θ) , aij (θ) (101)

based on Eqs. (95) and (97).
To apply PCE-based Galerkin projection (to the finite-element approximation of the stochastic variational

form), we introduce the “polynomial chaos space” WQ onto which we will be projecting the stochastic space
L2(Θ, P ):

WQ ≡ span {Ψ0, . . . ,ΨQ} ⊂ L2 (Θ, P ) (102)

where {Ψk}Q
k=0 are polynomial chaoses of some prespecified order with its type and domain depending on

the distributions imposed by the independent second-order random variables αx, αy, vx and vy. The number
of polynomials in this multi-dimensional expansion is denoted by (Q+1), which is defined in Eq. (6). Thus,
αx, αy, vx and vy can now be approximated by the following truncated (Q+ 1)-term PCE:

αx(ξ, θ) =

Q
∑

i=0

αx
i Ψi(ξ(θ)) αy(ξ, θ) =

Q
∑

i=0

αy
i Ψi(ξ(θ))

vx(ξ, θ) =

Q
∑

i=0

vx
i Ψi(ξ(θ)) vy(ξ, θ) =

Q
∑

i=0

vy
i Ψi(ξ(θ)) (103)

Analogously, the solution ch (x, ξ, t) can be approximated by substituting the corresponding truncated PCE
to Eq. (99):

ch (x, ξ, t) =
∑

i∈N

(
Q
∑

k=0

ci,k (t)Ψk (ξ)

)

Φi (x) ∈
(
Vh ⊗WQ

)
. (104)

Similarly, the same can be done for the test functions wh (x, ξ, t):

wh (x, ξ, t) =
∑

i∈N

(
Q
∑

k=0

wi,k (t)Ψk (ξ)

)

Φi (x) ∈
(
Vh ⊗WQ

)
. (105)

At this point, we can express the semi-discrete stochastic variational formulation in terms of the expansions
for αx, αy, vx, vy, ch and wh.
Next, we apply stochastic Galerkin projection, which involves solving for the coefficients

{cik}i∈N ,0≤k≤κ ∀{wjk}j∈N ,0≤k≤κ (106)
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that satisfy:

0 =
∑

i∈N

Q
∑

k=0

[∫

Ω

Φi (x) Φj (x) dx

]

ċikwjk +
1

R

{
∑

i,j∈N

+

[ Q
∑

s,k,l,m=0

αx
sv

x
k 〈ΨsΨkΨlΨm〉

(∫

Ω

∂Φi (x)

∂x

∂Φj (x)

∂x
dx

)

cilwjm

+

Q
∑

s,k,l,m=0

αy
sv

x
k 〈ΨsΨkΨlΨm〉

(∫

Ω

∂Φi (x)

∂y

∂Φj (x)

∂y
dx

)

cilwjm

−
Q
∑

k,l,m=0

vx
k 〈ΨkΨlΨm〉

(∫

Ω

∂Φi (x)

∂x
Φj (x) dx

)

cilwjm

−
Q
∑

k,l,m=0

vy
k 〈ΨkΨlΨm〉

(∫

Ω

∂Φi (x)

∂y
Φj (x) dx

)]

cilwjm

}

. (107)

which was derived by expanding Eq. (100) by applying Eqs. (91), (101), (103), and (104).
Due to the orthogonality of the stochastic expansion bases {Ψ}, Eq. (107) can be simplified and rewritten

in terms of the stochastic global matrices [M] and [K]:

[M] ˙[c] + [K] [c] = 0 (108)

In essence, Eq. (108) is the stochastic version of Eq. (93). Due to the stochastic Galerkin projection,
we now have a specific instance of Eq. (93) per each of the (Q + 1) stochastic modes that resulted from
projection onto the stochastic expansion bases.

Thus, the stochastic global matrices [M] and [K] are constructed from the deterministic global matrices
M and K (from Eq. (100)) as follows:

[M] =






M . . . 0
...

. . .
...

0 · · · M




 , [K] =






K0,0 . . . K0,Q

...
. . .

...
KQ,0 · · · KQ,Q




 . (109)

Moreover, the solution to Eq. (108) (i.e., the stochastic concentration field) is:

[c] =
(

c0 . . . cQ

)T
(110)

where ck =
(
c1,k . . . c|N |,k

)T
, 0 ≤ k ≤ κ, denotes the vector of nodal values of the kth stochastic mode

of the solution.
To explain in more details the construction of M and Kkl, we show Eq. (108) in its expanded form:






M . . . 0
...

. . .
...

0 · · · M











ċ0

...
ċQ




+






K0,0 . . . K0,Q

...
. . .

...
KQ,0 · · · KQ,Q











c0

...
cQ




 = 0 (111)

Let Kkl = K1
kl − K2

kl for 0 ≤ k, l ≤ κ. The construction of M, K1
kl and K2

kl is analogous to that in Section
6.1.1; the only difference is that these matrices are now assembled from stochastic element matrices instead
of their deterministic counterparts.

Using the backward Euler method, we can discretize Eq. (111) in time and rewrite it as:






M + K0,0∆t . . . K0,Q∆t
...

. . .
...

KQ,0∆t · · · M + KQ,Q∆t











c0

...
cQ






t+1/2

=






M . . . 0
...

. . .
...

0 · · · M











c0

...
cQ






t

. (112)
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Assuming uniform probability distributions for the random variables {αx, αy , vx, vy}, we can exploit the
orthogonality of Legendre polynomial chaos to approximate the mean and variance of the concentration at
each grid point i by:

c̄i

(

t+
1

2

)

= c
t+ 1

2

i,0 (113)

σ2
i

(

t+
1

2

)

=

Q
∑

k=1

(

c
t+ 1

2

ik

)2

(114)

In summary, after applying stochastic Galerkin projection to our stochastic problem, we arrive at Eq.
(112). Eq. (112) represents a set of (Q + 1) coupled deterministic systems of partial differential equations
(PDEs) to be solved by preconditioned Krylov methods Golub and Loan [57]. The number of PDE systems,
(Q + 1) = (p+m)!/ (p!m!), is determined by the number of random variables m and the desired order p
of the polynomials. Each such PDE system is defined over a grid consisting of |N | points. Thus, the total
number of algebraic equations encapsulated in Eq. (112) is (p+m)!/ (p!m!) × |N |.

6.1.2. Sampling-based Methods for Reaction Module

While the transport system (cf. Eq. (81)) can be solved independently per species, the reaction system
(cf. Eq. (82)) is coupled so it must be solved in its vectorized form. Reproduced here for completeness, the

reaction problem is to apply ct+ 1
2 (the transport solution) as the initial condition for solving ct+1 in:

∂ct+1

∂t
= Act+1 (115)

where A depends on the structure of the reaction network, which for our specific TCE biodegradation
problem, takes on the form of Eq. (80). The random variables under consideration are the first-order
reaction rates {ki}4

i=1 that comprise A.
The reaction module is implemented using non-intrusive UQ methods. Assuming each ki is uniformly

distributed on a prespecified range, we apply Latin hypercube or sparse grid sampling to derive an ensemble
of sample points, then compute ct+1 for each sample point analytically.

Following [54], the analytic procedure starts with a decomposition of A:

A = SΛS−1 (116)

where Λ is a diagonal matrix with diagonal
(
−k1 −k2 −k3 −k4

)
,

S =








1 0 0 0
R1

R2

l1k1

k2−k1
1 0 0

R1

R3

∏3
i=2

li−1ki−1

ki−k1

R2

R3

l2k2

k3−k2
1 0

R1

R4

∏4
i=2

li−1ki−1

ki−k1

R2

R4

∏4
i=3

li−1ki−1

ki−k2

R3

R4

l3k3

k4−k3
1







, (117)

and

S−1 =








1 0 0 0
R1

R2

l1k1

k1−k2
1 0 0

R1

R3

∏2
i=1

liki

ki−k3

R2

R3

l2k2

k2−k3
1 0

R1

R4

∏3
i=1

liki

ki−k4

R2

R4

∏3
i=2

liki

ki−k4

R3

R4

l3k3

k3−k4
1







. (118)

Then, ct+1 is computed as follows:

(i) Compute c̃ = S−1ct+ 1

2 , then let c̃ =
(
c̃1 . . . c̃4

)T
.

(ii) For i = 1 to 4, compute c∗i = c̃i exp (−ki∆t), then let c∗ =
(
c∗1 . . . c∗4

)T
.

(iii) Finally, compute ct+1 = Sc∗.

The analytic solver can be implemented as a black box, since the only requirement is that it be used
to evaluate ct+1 for each input sample of {ki}4

i=1. Once all sample points have been evaluated, the sample
mean and variance for ct+1 can be computed from Eqs. (11-12).
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6.1.3. Propagation of Uncertainties through the Transport and Reaction Modules

To propagate uncertainty information between modules, one needs to decide on a common format with
which to represent uncertainties as they are passed from one module to another. In our implementation, we
have chosen to use PCE coefficients, but samples may also be a viable alternative.

The full reaction-transport system with embedded UQ can now be solved by calling each module sequen-
tially at each time step. At the end of the simulation, the overall uncertainty and sensitivity information
can be extracted from the PC coefficients as prescribed in Section 3. The PC formulation for the transport
equation needs to be described in the larger context of the full reaction-transport system. The reason for this
requirement is due to the fact that, at the beginning of each time step, the incoming species concentrations
encompass uncertainties from both the transport and reaction systems from previous time steps. As such,
the transport module needs the knowledge of all uncertain parameters in the entire system, not just the ones
solely pertaining to transport. But nonetheless, the task of managing the global propogation of uncertain-
ties through transport module can be still handled elegantly so that the transport solver can be developed
independently from the reaction module (as validated by the decomposition property given in Section 4.4).
The decomposition and recombination of the global PCE information inside the stochastic transport module
are achieved through the restriction and prolongation operators available through a generic library of utility
functions provided as part of our modularly hybrid UQ framework.

At each time step, we iterate between the transport solve and the reaction solve. Since the transport
module is implemented using PCE-based method, its outputs are already expressed in the common PCE
format, as (Q + 1) coefficients for each grid point. To propagate these coefficients through the reaction
module, an ensemble of at least (Q + 1) sample points is required as input into the reaction module. The
sample generation is performed by the framework interface so that the reaction solver does not need the
knowledge of all parameters in the system. The sample points are then evaluated, analyzed and converted
back to the global PC coefficients by polynomial regression.

Here, we quickly summarize the implementation details for the modularly hybrid framework as applied
to the reaction-transport problem. We assume uniform distributions for all random variables under consid-
eration (i.e., αx, αy, vx, vy and {ki}4

i=1), as well as linear triangular elements in our approximations.
The objective is to solve Eq. (112). To do so, we need to form both the “left hand side” and “right hand

side” matrices in that equation before applying the equation to a linear equation solver. This equation needs
to be instantiated and solved for each species.

1. Enumerate the permutations corresponding to the mapping of the multi-dimensional form of the PC
expansion to a single-index form. The resulting number of permutations is equivalent to (Q+1), which
is the number of required polynomials for the stochastic Galerkin projection.

2. Compute the PCE representations of αx, αy, vx and vy in terms of random variables ξ.

3. For each (k, l) of the (Q+ 1) × (Q+ 1) blocks:

(a) Compute the effective dispersion coefficients Dx
kl and Dx

kl:

Dx
kl =

Q
∑

i=0

Q
∑

j=0

αx
i v

x
j eijkl Dy

kl =

Q
∑

i=0

Q
∑

j=0

αy
i v

x
j eijkl. (119)

(b) Compute the effective velocities V x
kl and V y

kl:

V x
kl =

Q
∑

i=0

vx
i eikl V y

kl =

Q
∑

i=0

vy
i eikl (120)

where eskl = 〈ΨsΨkΨl〉, 0 ≤ s, k, l ≤ Q, and esmkl = 〈ΨsΨmΨkΨl〉, 0 ≤ s,m, k, l ≤ Q.

4. Form the stochastic element matrices Me, K1e
kl , and K2e

kl by applying Eqs. (169), (176) and (177)
respectively.

5. Form M,K1
kl, and K2

kl by block assembly of Me, K1e
kl , and K2e

kl , respectively. Compute Kkl = K1
kl−K2

kl

for 0 ≤ k, l ≤ Q.
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6. Let [A] denote the “left hand side” matrix of Eq. (112). Form [A] by block assembly of M and Kkl

as follows:

[A]kl =

{
M + Kkl∆t if k = l
Kkl∆t otherwise

(121)

7. Denote by D the set of nodes lying on Γd, the portion of the domain boundary with Dirichlet conditions.
For m ∈ D, specify boundary conditions for each [A] sub-block, denoted by B = [A]kl ∈ R|N |×|N|:







Bmm = 1 if k = l
Bmn = 0 if k = l, n 6= m
Bmn = 0 otherwise

(122)

8. Let [b] denote the “right hand side” matrix of Eq. (112). Form [b] =
(

b0 . . . bQ

)T
where

bk = Mct for 0 ≤ k ≤ Q, and ct contains the computed concentrations from the previous time step.

9. For l ∈ D, we specify boundary conditions for [b]:

{
bl,k = (cd)l if k = 0
bl,k = 0 otherwise

where (cd)l is the lth nodal value of the given function cd (x) on Γd.

10. Finally, we compute ct+1/2 by solving the spectral linear system:

[A] ct+1/2 = [b]

where c
t+1/2
k =

(

c
t+1/2
1,k . . . c

t+1/2
|N |,k

)T

for 0 ≤ k ≤ Q.

The objective is to solve Eq. (115) using ct+1/2 as the initial condition. We proceed as follows:

1. Generate an ensemble of (Q+ 1) or more samples of {ki}4
i=1.

2. Convert ct+1/2 from the PCE format to the “ensemble” format. Recall that:

c
t+1/2
j (ξ) =

Q
∑

i=0

c
t+1/2
j Ψi(ξ)

for each grid point j. Hence, the PC coefficients c
t+1/2
j for each grid point are used with the sample

coordinates ξ (generated by Latin hypercube and optionally sparse sampling in our implementation)

to compute c
t+1/2
j (ξ).

3. Evaluate each sample point using the analytical formulae given in Section 6.1.2 with c
t+1/2
j (ξ) as the

initial condition.

4. Convert the sample outputs ct+1
j (ξ) back to PC coefficients using Legendre regression.

To validate our modularly hybrid UQ approach, we applied the framework to a reaction-transport system
with sequential first-order reactions involving four species. We used a two-dimensional domain of size 50
meters by 30 meters, with 50 evenly spaced elements in x-direction and 30 evenly spaced elements in y-
direction. Initial concentrations for all four species were assumed to be zero throughout the computational

domain. A Gaussian boundary concentration c (0, y, t) = exp
(

− (y − 15)
2
/45
)

was imposed at the inlet of x-

direction. The retardation coefficients and yield coefficients in the reaction matrix (cf. Eq. (80)) are treated
as deterministic and are set to R =

(
2.9, 2.8, 1.4, 5.3

)
, and l =

(
0.7927 0.7385 0.6458 0.4516

)
.

In this test scenario, we have nx = 51 grid points in the x-direction and ny = 31 grid points in the y-direction;
the time step is set to ∆t = 1 (day). We used the HYPRE iterative solver package [58] for solving the matrix
equations required to compute the deterministic and stochastic finite-element solutions.
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We assumed that the velocity in x-direction was dominant over the y-direction, so the randomness in the y-
direction was negligible and vy = 0. Subsequently, we have {αx, αy, vx, k1, k2, k3, k4} as our random variables,
which we imposed as uniformly distributed with ranges given in Table 2. Each of these variables are mapped
onto the Legendre interval [−1, 1]. We denote this transformed variable as ξ. For example, vx ∼ U([0.4, 0.6]),
so setting γx

v = 0.5 and βx
v = 0.1 would ensure that ξ is mapped back to vx via vx(ξ) = γx

v + βx
v ξ. Since

there are actually six independent variables (αy is αx scaled), there are also six transformed variables
ξ = {ξ1, ξ2, ξ3, ξ4, ξ5, ξ6}.

Table 2: Uncertain parameters

Parameter Minimum Maximum Distribution Scale Randomness
vx (m d−1) 0.4 0.6 Uniform Linear ξ1
αx (m) 8.0 12.0 Uniform Linear ξ2
αy = 0.1αx (m) 0.8 1.2 Uniform Linear ξ2
k1 (day−1) 0.04 0.06 Uniform Linear ξ3
k2 (day−1) 0.024 0.036 Uniform Linear ξ4
k3 (day−1) 0.016 0.024 Uniform Linear ξ5
k4 (day−1) 0.004 0.006 Uniform Linear ξ6

As basis for comparison, we approximated the ground truth by quasi-Monte Carlo sampling (sample
size of 1000) using a non-intrusive UQ software called PSUADE [59]. We studied the convergence of our
method with respect to the polynomial order by examining the concentration mean and standard deviation
at c (25, 15), which corresponds to the output at the center of the physical domain. We observed from Fig.
3 that the polynomial order p = 3 provides reasonable accuracy for this problem.
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Figure 3: Errors of concentration mean and standard deviation computed by the modularly hybrid UQ
method compared to pure sampling using 1000 samples. Concentrations for species 1, 2, 3 and 4 are shown
at top left, top right, bottom left and bottom right respectively. All concentrations shown are taken from
the center of the physical domain at t = 30 days.

For subsequent experiments, we used the “optimal” polynomial order of p = 3 for the PCE implementa-
tion. Figs. 4 and 5 show the computed means µ and standard deviations σ for the species concentrations
at t = 30 days. Fig. 4 shows, for each species, the uncertainty bands of µ± σ along the center line y = 15.
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Fig. 5 shows µ and σ over the entire two-dimensional domain. Lastly, we compare these results against the
ground truth (approximated by sampling) in Fig. 6.

Figure 4: Uncertainty bands (µ ± σ) derived from the concentration mean µ and the standard deviation σ
computed by the modular hybrid UQ method using p = 3 for the PCE order. Concentrations for species 1,
2, 3 and 4 are shown at top left, top right, bottom left and bottom right respectively. All concentrations
shown are taken from the center line y = 15 of the physical domain at t = 30 days.
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Figure 5: Contours of the concentration mean µ and the standard deviation σ computed by the modular
hybrid UQ method using p = 3 for the PCE order. Concentrations for species 1, 2, 3 and 4 are shown at
top left, top right, bottom left and bottom right respectively. All concentrations are from t = 30 days.

Recall from Section 6.1 that, due to the structure of the sequential network, subsequent species’ concen-
trations depend on incrementally more variables than the precedent species. In particular, species 1 depends
on three random variables ({vx, αx, k1}); species 2 depends on four ({vx, αx, k1, k2}); species 3 depends on
five ({vx, αx, k1, k2, k3}); and species 4 depends on six ({vx, αx, k1, k2, k3, k4}).

If one were to apply third-order PCE to the full problem, in order to capture the uncertainties at each
grid point, according to Eq. (6):� species 1 would require (3 + 3)!/(3!3!) = 20 terms;
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Figure 6: Concentration mean and standard deviation computed by the modularly hybrid UQ method (using
p = 3 for the PCE order) compared to pure sampling using 1000 samples. Concentrations for species 1, 2, 3
and 4 are shown at top left, top right, bottom left and bottom right respectively. All concentrations shown
are taken from the center line y = 15 of the physical domain at t = 30 days.� species 2 would require (4 + 3)!/(4!3!) = 35 terms;� species 3 would require (5 + 3)!/(5!3!) = 56 terms;� species 4 would require (6 + 3)!/(6!3!) = 84 terms.

Although our method does not solve the problem using 20-, 35-, 56- and 84-terms PCE, our method
does use this format to store the global uncertainty information from both modules. Recall that inference
of vx and αx takes place in the transport module (via third-order PCE) and inference of {ki}4

i=1 takes
place in the reaction module (via sampling). To match the incoming 20-, 35-, 56- and 84-terms PCE to
the transport module’s internal format, the incoming uncertainty information from the reaction module are
decomposed into subproblems. Let m1 denote the number of variables in the transport module, m2 denote
the number of variables in the reaction module, and m = m1 + m2 denote the number of joint variables.
Each species’ ((m + p)!/m!p!)-terms PCE will be decomposed into ((m2 + p)!/m2!p!) subproblems, one for
each term in the single-index PC representation of the reaction variables. For example, species 1 has m1 = 2
transport variables and m2 = 1 reaction variable. Its 20-terms PCE will be decomposed into 4 smaller
subproblems. The first subproblem corresponds to zeroth order of k1, which contains (m1 + p)!/m1!p! = 10
terms involving only vx and αx. The second subproblem corresponds to first order of k1, which contains
(m1 +p−1)!/m1!(p−1)! = 6 terms. The third subproblem corresponds to second order of k1, which contains
(m1 +p−2)!/m1!(p−2)! = 3 terms. The fourth subproblem corresponds to third order of k1, which contains
(m1 + p− 3)!/m1!(p− 3)! = 1 term. Similarly:� species 2’s 35-terms PCE will be decomposed into 10 subproblems (one containing 10-terms, two 6-

terms, three 3-terms, and four 1-term);� species 3’s 56-terms PCE into 20 subproblems (one containing 10-terms, three 6-terms, six 3-terms,
and ten 1-term);� species 4’s 84-terms PCE into 35 subproblems (one containing 10-terms, six 6-terms, three 3-terms,
and twenty 1-term).

These subproblems are then solved by the transport module, then the results are subsequently re-packaged
back into the 20-, 35-, 56- and 84-terms PCE format (for each of four species, respectively) for subsequent
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processing by the reaction module. For the reaction module, the incoming uncertainty information (in PCE
format) would have 84 coefficients for each grid point. Thus, to propagate and reconstruct the coefficients,
a minimum sample size of 84 is required as input into the reaction module.

6.2. Two-dimensional Flow and Reactive Transport in Heterogeneous Porous Media

Let K (x, θ), the stochastic hydraulic conductivity, be represented as a random process in the space
Ω⊗L2 (Θ, P ), where ⊗ denotes the Cartesian product and x = (x, y) ∈ Ω, θ ∈ Θ. Applying the logarithmic
transformation Y (x, θ) = lnK (x, θ), we arrive at the following stochastic partial differential equations to
describe a stochastic flow:

∂

∂x

{

exp [Y (x, θ)]
∂h (x, θ)

∂x

}

+
∂

∂y

{

exp [Y (x, θ)]
∂h (x, θ)

∂y

}

= 0, (123)

where h (x, θ) is the stochastic hydraulic head, which will be used to compute the stochastic velocity field
required by the transport module.

In this section, we describe the steps to compute the stochastic velocity field (i.e., the solution to the
stochastic flow equation given in equation (123)) via a doubly-nested dimension reduction scheme that
combines the KLE and proper orthogonal decomposition (POD) methods. Section 6.2.1 describes how
KLE is used to reduce the infinite-dimensional random field Y (x, θ) to an approximate finite-dimensional
representation. Section 6.2.2 presents a non-intrusive PCE-based method (the implementation of which
is greatly facilitated by the modular UQ framework) to solve for the stochastic hydraulic head h (x, θ)
from the stochastic flow equation. Section 6.2.3 describes a POD reduced-order modeling technique based
on singular value decomposition (SVD) to generate a low-dimensional stochastic velocity field from the
stochastic hydraulic head.

6.2.1. Kahunen-Loeve Expansion (KLE) of Logarithmic Hydraulic Conductivity

For the random process Y (x, θ) in equation (123), the covariance function [40, 41, 42, 43]:

CY (x,y) = 〈Y (x, θ) , Y (y, θ)〉Ω (124)

is bounded, symmetric and positive definite with x = (x1, y1) ∈ Ω and y = (x2, y2) ∈ Ω (〈· , ·〉Ω in equa-
tion (124) denotes the inner product in the space Ω). The covariance function can be decomposed into:

CY (x,y) =

∞∑

n=1

λnfn (x) fn (y) (125)

where λn and fn (x) are the eigenvalues and eigenfunctions, respectively. Here, fn (x) are the orthogonal
and deterministic functions that form a complete set such that:

∫

Ω

fn (x) fm (x) dx = δnm, n,m ≥ 1

where δnm is the Kronecker product.
The random process Y (x, θ) can be expressed via KLE as:

Y (x, θ) = Ȳ (x) +

∞∑

n=1

√

λnfn (x) ξn (θ) (126)

where Ȳ (x) is the mean of the stochastic process Y (x, θ), and ξn (θ) are orthogonal zero-mean random
variables. Formally, 〈ξn (θ)〉L2(Θ,P ) = 0, and 〈ξn (θ) , ξm (θ)〉L2(Θ,P ) = δnm, where 〈·, ·〉L2(Θ,P ) denotes the

inner product in the space L2 (Θ, P ).
Eigenvalues and eigenfunctions of the covariance function CY (x,y) can be solved from the following

Fredholm equation: ∫

Ω

CY (x,y) f (x) dx = λf (y) . (127)
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Table 3: Ranges of physical parameters in validation experiments

Physical Parameters Case I Case II Physical Parameters Case I Case II

vx (m d−1) 0.2 ± ǫ [0.1, 0.3] k1 0.05 ± ǫ [0.04, 0.06]
vy (m d−1) 0.0 0.0 k2 0.03 ± ǫ [0.024, 0.036]
αx (m) 1.25 ± ǫ [1.0, 1.5] k3 0.02 ± ǫ [0.016, 0.024]
αy (m) 0.0 0.0 k4 0.005 ± ǫ [0.004, 0.006]

For example, consider a one-dimensional stochastic process with the following covariance function:

CY (x1, x2) = σ2
Y exp (− |x1 − x2| /ζ) (128)

where x and y are scalars, and σ2
Y and ζ are the variance and correlation length of the random process. The

eigenvalues λn and eigenfunctions fn (x,y) can be solved analytically [40]. For problems in two dimensions,
we consider a separable covariance function:

CY (x,y) = σ2
Y exp (− |x1 − x2| /ζ1 − |y1 − y2| /ζ2) (129)

in a domain Ω = {(x, y) : 0 ≤ x ≤ L1; 0 ≤ y ≤ L2}, and the eigenvalues and eigenfunctions can be obtained
by combining those from the one-dimensional formulations. We can truncate the KLE to a finite number
of terms by inspecting the spectral decay rate of λn. The higher the rate of spectral decay is, the smaller
the number of terms is needed in the truncated KLE. In fact, the rate of spectral decay depends on the
correlation function of the stochastic process. The more correlated the process is, the higher is the rate of
spectral decay and fewer terms are needed in the truncated KLE to account for the same fraction of the
total variance.

6.2.2. Non-intrusive PC-based Stochastic Solution of Flow Equation

By substituting the truncated (N -term) KLE of Y (x, θ) (assuming Ȳ (x) = 0 and omitting θ in ξn (θ))
into the stochastic flow equation, we obtain:

∂

∂x

[

exp

(
N∑

n=1

√

λnfn (x) ξn

)

∂h (x, θ)

∂x

]

+
∂

∂y

[

exp

(
N∑

n=1

√

λnfn (x) ξn

)

∂h (x, θ)

∂y

]

= 0. (130)

Next, we expand h (x, θ) in terms of PCE:

h (x, θ) =

Q
∑

i=0

hi (x)Ψi (ξ) (131)

where Q is defined in equation (6), and ξ is the vector of random variables from equation (130):

ξ = (ξ1, ξ2, . . . , ξN )
T
. (132)

To solve the stochastic flow equation, we first generate a set of the N ≥ Q+ 1 sample points, that is:

ξl = (ξ1l, ξ2l, . . . , ξN l)
T
, l = 1, . . . , N. (133)

For each sample point ξl, we solve the following deterministic equation:

∂

∂x

{

exp

[
N∑

n=1

√

λnfn (x) ξnl

]

∂hl (x)

∂x

}

+
∂

∂y

{

exp

[
N∑

n=1

√

λnfn (x) ξnl

]

∂hl (x)

∂y

}

= 0 (134)
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Figure 7: Comparison of relative concentrations at y = 10 m and t = 40 d. The relative concentration
means computed from the modular UQ method with polynomial order of p = 3 are shown as solid lines, and
those computed from the analytical procedure are shown as circles. For the modular UQ method, parameters
correspond to Case I in Table 3.

by applying a Galerkin finite-element discretization approach.
Let H (x) = [h (x, ξ1) , h (x, ξ2) , . . . , h (x, ξN )]

T
be the set of hydraulic heads obtained by solving the

corresponding N deterministic equations above. The objective is to compute the PCE coefficients for the
hydraulic head h (x, θ), that is, [h0 (x) , h1 (x) , . . . , hQ (x)]

T
, such that:

hl (x, θl) =

Q
∑

i=0

hi (x)Ψi (ξl) , l = 1, . . . ,N . (135)

In matrix form, equation (135) can be rewritten as:

Zh (x) = H (x) (136)

where Z = (zli)N×(Q+1) with zli = Ψi (ξl) consisting of Legendre polynomials evaluated at the sample points

ξl, l = 1, . . . ,N . Since Z is either a square matrix or an overdetermined matrix, h (x) can be solved in a
least-square sense by:

h (x) =
(
ZTZ

)−1
ZTH (x) . (137)

The sample generation and the computation of h(x) are automatically handled by the non-intrusive
module in the modular UQ framework.

6.2.3. Generation of Stochastic Velocity Field

The stochastic velocity can now be computed using the KLE of hydraulic conductivity and the stochastic
hydraulic head. The respective x- and y-direction velocities are:

vx (x, θ) =
K (x, θ)

φ

∂h (x, θ)

∂x

=
1

φ
exp

[
m∑

n=1

√

λnfn (x) ξn

]

∂h (x, ξ)

∂x

=
1

φ
exp

[
m∑

n=1

√

λnfn (x) ξn

]
Q
∑

i=0

∂hi (x)

∂x
Ψi (ξ) (138)
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Figure 8: Uncertainty bands (µ±σ) showing the relative concentration means (solid lines) and the standard
deviations (blue bands) computed by the modular UQ method with polynomial order of p = 3 for y = 10 m.
Exact solutions (circles) are shown for completeness. (a), (b), (c), and (d) correspond to species 1, 2, 3, 4,
respectively. For the modular UQ method, parameters are from Case II in Table 3.

vy (x, θ) =
K (x, θ)

φ

∂h (x, θ)

∂y

=
1

φ
exp

[
m∑

n=1

√

λnfn (x) ξn

]
Q
∑

i=0

∂hi (x)

∂y
Ψi (ξ) (139)

where φ is the porosity, which is assumed to be a known constant. Therefore, the overall velocity field is
given by:

v (x, θ) = (vx [x, ξ (θ)] , vy [x, ξ (θ)])
T
. (140)

In equation (140), the bi-orthogonality structure of the KLE representation of K (x, θ) is destroyed in
v (x, θ). This introduces high stochastic dimension and thus computational inefficiency in the solution
of the stochastic transport equation. To mitigate this situation, we use a numerical covariance quadrature
method to approximate the analytical covariance function (the method of snapshots [60]), then apply singular
value decomposition. To do so, we generate a set of samples {θ}N

i=1 in the stochastic space Θ and solve

equations (138) and (139) at each sample point θi to compute vs = {v (x, θi)}N
i=1, where N ≥ Q + 1.

Subsequently, the numerical covariance matrix can be constructed from (vs −vs)
T(vs −vs), where vs is the

sample mean of vs.
It can be shown that the eigenvalue decomposition of the covariance matrix is equivalent to applying

SVD [57] to (vs − vs):
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Figure 9: Hydraulic head mean computed by a PCE-based non-intrusive method using least squares fit with
polynomial order of p = 3.
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Figure 10: Hydraulic head variance computed by a PCE-based non-intrusive method using least squares fit
with polynomial order of p = 3.
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vs − vs = USVT =
(
f1 · · · fr · · · f|N |

)

ℵ×ℵ
︸ ︷︷ ︸

U












s1 0
. . .

sr

. . .

sN

0 · · · 0













ℵ×N
︸ ︷︷ ︸

S

(
g1 · · · gN

)T

N×N
︸ ︷︷ ︸

VT

where vs = f0 (x) is the sample mean of vs representing the average velocity field; r is the number of
truncated singular values; and ℵ is the number of nodes on the finite-element mesh that are not lying on
∂Ω. Let fn = (fn1, . . . , fnℵ)T, and gn = (gn1, . . . , gnN)T. Then, vs can now be represented by an optimal
rank-r approximation using the eigen-velocity field fn (x):

vs (x) = vs (x) +
r∑

n=1

snfn (x) gTn

where fn (x) = (fx
n (x) , fy

n (x)). If instead of using the samples gTn , we consider the sampled variables
themselves (denote the first r of those variables as η = {ηn}r

n=1), then we have the general (non-sample-
based) expression for the velocity field:

v (x, θ) = f0 (x) +

r∑

n=1

snfn (x) ηn (141)

Thus:

vx (x, θ) = fx
0 (x) +

r∑

n=1

snf
x
n (x) ηn

vy (x, θ) = fy
0 (x) +

r∑

n=1

snf
y
n (x) ηn. (142)

Note that vx (x,η) and vy (x,η) now share a new set of random variables η, and their ranges can be
specified by the variability of their realizations from the coefficient matrix V computed from SVD. Let
Rn1 = min {gnj}N

j=1 and Rn2 = max {gnj}N
j=1 , n = 1, . . . , r, and define:

Rn = min {|Rn1| , |Rn2|} , n = 1, . . . , r. (143)

Using Rn, we can normalize the random variables {ηn}r
n=1 by s′n = sn/Rn and finally represent the spatially

correlated random field v (x, ξ) in terms of the stochastic expansion of the spatially uncorrelated normalized
random variables η:

v (x, θ) = f0 (x) +

r∑

n=1

s′nfn (x) ηn, (144)

which is applied as an (uncertain) input to the transport module (to be discussed in Section 6.2). Here,
ηn (θ) follows a standard uniform distribution: ηn (θ) ∼ U [−1, 1] , n = 1, . . . , r.

In this section, we describe the steps to solve a multi-species reactive transport system using the velocity
field obtained in Section 6.2. Here, we apply the modular UQ methodology described in Section 4. In
the following, we first introduce the formulation of a two-dimensional reactive transport system in hetero-
geneous porous media, then describe the stochastic solution of the transport and reaction modules, where
the transport system is solved by the PCE-based intrusive method and the reaction system is solved by a
sampling-based non-intrusive method. Finally, we show how to “glue” these two independently-implemented
modules together using the modular UQ framework to propagate global uncertainties and sensitivities.
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6.2.4. PC-based Stochastic Transport

The transport equation can be solved independently for each species. Hence, it suffices to discuss the
PCE formulation of one generic species’ (scalar) transport equation. Removing the species and time indices,
the scalar transport equation becomes:

∂c

∂t
=

1

R

∂

∂x

(

αxvx ∂c

∂x

)

+
1

R

∂

∂y

(

αyvx ∂c

∂y

)

− 1

R

∂ (vxc)

∂x
− 1

R

∂ (vyc)

∂y
∈ Ω (145)

where again, Ω is an anisotropic two-dimensional domain with boundary ∂Ω.
When αx, αy , vx and vy are fixed parameters, equation (145) describes a deterministic problem with the

species’ concentration field as its solution:

c : (x, t) ∈ Ω × [t0, tf ] 7→ c (x, t) ∈ R. (146)

where c (x, ·) = cd (x) , x ∈ ∂Ω, and cd (x) is a given function on ∂Ω.
We apply PCE-based stochastic Galerkin projection with the finite-element approximation of the stochas-

tic variational form and we introduce the “polynomial chaos space” WQ onto which we project the stochastic
space L2(Θ, P ):

WQ ≡ span {Ψ0, . . . ,ΨQ} ⊂ L2 (Θ, P ) (147)

where {Ψk}Q
k=0 are the polynomial chaoses of some pre-specified order p, and the number of terms (Q+ 1)

is defined in equation (6). After applying stochastic Galerkin projection (Appendix A) to the stochastic
problem, we arrive at equation (112), which is a sparse matrix system that can be solved by preconditioned
Krylov methods [57].

6.2.5. Propagation of Uncertainties through the Transport and Reaction Modules

While the transport system (equation (81)) can be solved independently for each species, the reaction
system (equation (82)) is coupled so it must be solved in its vectorized form. Reproduced here for clarity,

the reaction problem is to apply ct+ 1
2 (the transport solution) as the initial condition for solving ct+1 in:

∂ct+1

∂t
= Act+1 (148)

where A has the form of equation (80). To solve this equation, we follow the analytical procedure in [54]. This
equation is solved for each sample of {ki}4

i=1, the first-order reaction rates which are the random variables
in the reaction module.

In terms of implementation, the reaction solver is “wrapped” around by a non-intrusive module in the
modular UQ framework, which provides generic tools for sampling and regression analysis. Thus, the reaction
solver is treated as a black box to run an ensemble of sample points drawn from the probability distributions
of {ki}4

i=1, the results of which are used to construct uncertainty and sensitivity information to be propagated
to the next module.

The full reaction-transport system with embedded UQ can now be solved by calling each module sequen-
tially at each time step. At the end of the simulation, the overall uncertainty and sensitivity information can
be extracted from the PCE coefficients as prescribed in Section 3. The task of global uncertainty propaga-
tion is handled by the modular UQ framework, freeing the user to develop the transport or reaction solver
independently. The computational framework to handle the decomposition and recombination of the global
PCE information is generic so that it can be applied to other similar “multi-physics” problems.

In summary, we have described the multi-species reactive transport problem as a two-module system in
the modular UQ framework, in which the propagation of global uncertainties through the transport module is
performed intrusively while the propagation of global uncertainties through the reaction module is performed
non-intrusively. By applying the stochastic velocity field from the flow module as input into the transport
module, spatial uncertainty associated with the randomly heterogeneous media is propagated through the
system.
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Figure 11: Eigen-velocity fields computed by our doubly-nested dimension reduction scheme. (a), (b), (c),
(d) correspond to the first, second, fifth, and seventh mode of the eigen-velocity fields, respectively.

Table 4: Description of physical flow and transport parameters in numerical experiments

Physical Parameters Definitions Internal Representations

v = (vx, vy) (m d−1) v = f0 (x) +
∑r

n=1 λ
′

nfn (x) ηn (θ) {ηi}r
i=1

αx, αy (m) αy (ξ1) = 0.1αx (ξ1) ξ1
Dx, Dy (m2 d−1) Dx = αxvx, Dy = αyvx ξ1, {ηi}r

i=1

Table 5: Description and ranges of physical reaction parameters in numerical experiments

Physical Parameters Internal Representations Case I Case II

k1 (day−1) ξ2 [0.04999, 0.05001] [0.04, 0.06]
k2 (day−1) ξ3 [0.02999, 0.03001] [0.024, 0.036]
k3 (day−1) ξ4 [0.01999, 0.02001] [0.016, 0.024]
k4 (day−1) ξ5 [0.004999, 0.005001] [0.004, 0.006]
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Figure 12: Comparison of relative concentration means at y = 10 m and t = 10 d. The results computed
from the modular UQ method with polynomial order of p = 3 are shown as solid lines, and those computed
from sampling with 1000 samples are shown as dashed lines. Transport and reaction parameters are from
Tables 4 and 5 (Case II). (a), (b), (c), and (d) correspond to species 1, 2, 3, 4, respectively.
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Figure 13: Comparison of relative concentration standard deviations at y = 10 m and t = 10 d. The results
computed from the modular UQ method with polynomial order of p = 3 are shown as solid lines, and those
computed from sampling with 1000 samples are shown as dashed lines. Transport and reaction parameters
are from Tables 4 and 5 (Case II). (a), (b), (c), and (d) correspond to species 1, 2, 3, 4, respectively.
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In numerical experiments, we consider a two-dimensional square domain Ω of size L1 = L2 = 20 (m),
with 40 evenly spaced elements in each direction. The time step is set to ∆t = 1 (d). We used a polynomial
order of p = 3 in the PCE representation which has been verified to give results with sufficient accuracy.

First, we make sure that our previously described two-dimensional methodology agrees well with the
analytical solution [54] for one-dimensional multi-species reactive transport model problem. This validation
step is important to ensure the methodology does not introduce numerical bias to the solution. In this
problem setup, dispersivity is α = 1.25 (m) and velocity is v = 0.2 (m d−1). The reaction rates for the four
species are k1 = 0.05, k2 = 0.03, k3 = 0.02, and k4 = 0.005 (d−1), respectively. The retardation factors and
yield coefficients are all assumed to be 1.0. The homogeneous velocity is given by (vx, vy) (m d−1), where
both vx and vy are homogeneous random variables with ranges defined in Table 3. Since we are using a
one-dimensional problem to verify the two-dimensional implementation, we set the dispersivity and velocity
in the y-direction to zero. The total simulation time is t = 40 (days) with ∆t = 1 (day). We used the
HYPRE iterative solver package [58] to solve the matrix equations arising from the discretization of the
stochastic finite-element problem.

We considered two scenarios: one in which the uncertainty is negligible (Case I) and another with
increased uncertainty (Case II). In both scenarios, we compare the analytic solution against our solution
at the center line y = 10 (m) since the solution is computed for a two-dimensional stochastic domain. For
the first scenario, we assumed no variability in dispersivity and velocity (as defined in Case I of Table 3)
by setting very small uncertainty ranges to velocity parameters and using a polynomial order of p = 0. As
shown in Fig. 7, the concentration means computed by the modular UQ method (solid lines) agree well with
the exact solutions (circles) given in [53]. For the second scenario, the ranges of dispersivity and velocity are
defined in Case II of Table 3. As shown in Fig. 4, the exact solutions (circles) of the concentration profiles lie
inside of the uncertainty bands of µ±σ computed by our method. Here, the µ lines are the same as the ones
from Fig. 7. These two scenarios demonstrate that our method is well validated against analytic methods
and that no bias is introduced by our method.

In the next numerical experiment, we consider a two-dimensional four-species flow and reactive trans-
port system in randomly heterogeneous porous media. We first used KLE to reduce the dimension of
the logarithmic hydraulic conductivity.We then applied a PCE-based non-intrusive approach (i.e., used
sampling to construct the PCE coefficients) to solve the stochastic flow equation. In this setup, no-flow
boundary conditions are assumed at y = 0.0 m and y = 20 m; and constant hydraulic heads are pre-
scribed to be 2.0 m and 0.0 m at x = 0.0 m and x = 20 m, respectively. The mean of the logarith-
mic hydraulic conductivity is prescribed as Y = 0. We used a separable covariance function of the log-
arithmic hydraulic conductivity CY (x,y) = σ2

Y exp (− |x1 − x2| /ζ1 − |y1 − y2| /ζ2) in the square domain
Ω = {(x, y) : 0 ≤ x ≤ 20; 0 ≤ y ≤ 20}, with variance σ2

Y = 1.0 and correlation length ζ1 = ζ2 = 1.0. Figs. 9
and 10 show the computed mean and variance of the hydraulic head, which have been verified by using a large
Monte Carlo sample. The stochastic velocity field was thus computed based on the KLE of hydraulic con-
ductivity field and the computed stochastic hydraulic head field, which introduces high stochastic dimension
to the velocity field. We then obtain orthogonal eigen-velocity fields by our doubly nested dimension reduc-
tion scheme. Fig. 11 displays the first, second, fifth and seventh eigen-velocity field in the two-dimensional
domain.

Next, we applied the solution to the stochastic flow equation for solving the reactive transport system
(equation 75). Initial concentrations for all four species are assumed to be zero throughout the computational

domain. A Gaussian boundary concentration c (0, y, t) = exp
(

− (y − 15)
2
/45
)

is imposed at the inlet in

the x-direction. The retardation factors and yield coefficients in the reaction matrix A (equation (80)) are
treated as deterministic and are given by: R = (2.9, 2.8, 1.4, 5.3) and l = (0.7927, 0.7385, 0.6458, 0.4516).
Results are presented for t = 10 (d).

In this experiment, the porosity is specified by a deterministic constant φ = 0.3. The independent
physical parameters are: {vx, vy} from the flow module, αx from the transport module (because αy = 0.1αx,
Dx = αxvx, and Dy = αyvx are dependent random variables), and {k1, k2, k3, k4} from the reaction module.
These parameters are assumed to follow uniform distributions and their ranges are given in Table 4 and
Table 5. These tables also show how each of these physical parameters are internally represented by the
generic random variables in the modular UQ framework: vx, vy by {ηi}r

i=1, where r is the number of KLE
functions taken from the stochastic flow module; αx is internally represented by ξ1; D

x, Dy by {ηi}r
i=1 and
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order of p = 3 at t = 10 d. Transport and reaction parameters are from Tables 4 and 5 (Case II). (a), (b),
(c), and (d) correspond to species 1, 2, 3, 4, respectively.
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ξ1; and ki by {ξi}5
i=1. The total number of uncertain parameter is r + 5 where r is the number of KLE

functions taken from the stochastic flow module and 5 is the number of ξi’s. We use r = 2, for the reason
that, when we varied r from 2 to 7, we noticed only a negligible change in the standard deviations. In sum,
the physical uncertain parameters are represented by the random vector ξ = {η1, . . . , ηr, ξ1, ξ2, ξ3, ξ4, ξ5}.

We ran the numerical experiment on an iMac computer (with 3.4 GHz Intel Core i7 processor and 8
GB 1333 MHz DDR3 memories). We compare our results against the “ground truth” results approximated
by a large number of samples, as shown in Figs. 12 and 13. We observe that the modular UQ method
demonstrates a similar accuracy as the ground truth results. Figs. 14 and 15 show the contours of µ (mean)
and σ (standard deviation) over the entire two-dimensional domain, respectively. We also compare the
performance of our modular UQ method with a pure sampling-based method (using 1000 samples, which is
the minimum required for convergence of statistical moments). The overall CPU run times are 91 (s) and 821
(s), respectively. The speedup of the modular UQ can be attributed to the reuse of the assembled stochastic
matrices in the intrusive transport module. Specially, the CPU run times for matrix setup are 15 (s) and
389 (s), respectively, while the CPU run time for linear system solves are 76 (s) and 432 (s), respectively.
Further speedup of our modular UQ can be obtained by using more efficient solvers for linear system with
multiple right hand sides.

6.3. Predator-prey Model

In this section we demonstrate the use of our hybrid framework in the simulation of a predator-prey
model characterized by the following system of Lotka-Volterra equations.

dx

dt
= x(α− βy) (149)

dy

dt
= −y(γ − δy)

where x is the number of preys, y is the number of predators, and α, β, γ, δ are parameters describing the
interaction of the two species. This system can be solved using the Runge-Kutta method at each time step.

In this example, all α, β, γ, δ are uncertain parameters such that 0.95 ≤ α ≤ 1.05, 0.19 ≤ β ≤ 0.21,
0.48 ≤ γ ≤ 0.52, and 0.038 ≤ δ ≤ 0.042. The equations are solved sequentially in a given time step using
polynomial chaos expansions. The main program using our hybrid UQ framework is as follow:

int nRVs=4, pOrder=2;

PCEPermutations pcePerms;

PCEDataStreams VecPD;

ModuleNonLinPCE xModule, yModule;

sparam = "nRVs 4"; xModule.setParam(sparam); yModule.setParam(sparam);

sparam = "pOrder 6"; xModule.setParam(sparam); yModule.setParam(sparam);

sparam = "setRV 1"; xModule.setParam(sparam);

sparam = "setRV 2"; xModule.setParam(sparam);

sparam = "setRV 3"; yModule.setParam(sparam);

sparam = "setRV 4"; yModule.setParam(sparam);

xuserSolver = new UserPCEPrey();

yuserSolver = new UserPCEPredator();

//**/ set up initial conditions

VecPD[0][0] = 20;

VecPD[0][1] = 8;

for (iT = 0; iT < numTimeSteps; iT++)

{

printf("Lotka-Volterra: time step = %d\n", iT);

//**/ solve for prey

xModule.setup(VecPD, xContext);

xModule.solve(VecPD, xContext);

//**/ solve for prey
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predator (blue-α, green-β, red-γ, cyan-δ).

yModule.setup(VecPD, dContext);

yModule.solve(VecPD, dContext);

}

Other than this main program, users need to implement the two PCE modules for prey and predator,
respectively. Figure 16 shows the time evolution of the prey and predator population after 5000 time steps.

6.4. Non-linearly Coupled Contaminant Flow

We consider the a reactive-transport model for contaminant flow where x1 and x2 are the velocity
components of the fluid, x3, x4 and x5 are the respective concentration of the chemical species. The physical
domain is defined as Ω ≡ (0, τ) × [0, 1]

2
. The formulation of the entire system is given as follows.

∂

∂t
x1 + x1

∂

∂s1
x1 + x2

∂

∂s2
x1 = (κ0 + κ1x3 + κ2x4 + κ3x5)

(
∂2

∂s21
x1 +

∂2

∂s22
x1

)

, (150)

∂

∂t
x2 + x1

∂

∂s1
x2 + x2

∂

∂s2
x2 = (κ0 + κ1x3 + κ2x4 + κ3x5)

(
∂2

∂s21
x2 +

∂2

∂s22
x2

)

, (151)

∂

∂t
x3 + x1

∂

∂s1
x3 + x2

∂

∂s2
x3 = −

(
θ4x

2
4 + θ5x5

)
x3 + 2θ6x4x5; (152)

∂

∂t
x4 + x1

∂

∂s1
x4 + x2

∂

∂s2
x4 = − (θ6x5 + θ4x3x4)x4 + 2θ5x5x3; (153)

∂

∂t
x5 + x1

∂

∂s1
x5 + x2

∂

∂s2
x5 = − (θ5x3 + θ6x4)x5 + 2θ4x3x

2
4. (154)

The initial conditions are as follows.

x1 (0, s1, s2) =

{

θ1v0 (1 − 4s1) s1 < 0.25

0 s1 ≥ 0.25
and x2 (0, s1, s2) = θ2x1 (0, s1, s2) s

2
2 (1 − s2)

2
;
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x3 (0, s1, s2) =

{

1 s1 = 0

0 s1 > 0
, x4 (0, s1, s2) = 0, and x5 (0, s1, s2) = θ3x3 (0, s1, s2).

The boundary conditions at s2 = 0 and s2 = 1 are periodic.
At s1 = 0, we have Dirichlet boundary conditions:
x1 (t, 0, s2) = θ1v0, x2 (t, 0, s2) = θ2x1 (t, 0, s2) s

2
2 (1 − s2)

2;
x3 (t, 0, s2) = 1, x4 (t, 0, s2) = 0, x5 (t, 0, s2) = θ3.
At s1 = 1, we have Neumann boundary conditions:
∂s1

x1 (t, 1, s2) = ∂s1
x2 (t, 1, s2) = ∂s1

x3 (t, 1, s2) = ∂s1
x4 (t, 1, s2) = ∂s1

x5 (t, 1, s2) = 0. The above model
is a simplified case of unsteady, multi-phase flows with non-linear interactions between the quantities. We
are interested in the mean and variance of x3. For our analysis, we set v0 = 10, κ0 = 0.01, κ1 = 0.01,
κ2 = 0.5. and κ3 = 0.02. The 6-dimensional stochastic domain Θ has uniform probability density such that
θ1 ∼ U [0.5, 1.5], θ2 ∼ U [−0.2, 0.2], θ3 ∼ U [0.1, 0.3], θ4 ∼ U [0.2, 0.5], θ5 ∼ U [0.3, 0.6] and θ6 ∼ U [0.1, 0.2];
We derive a global discrete formulation for the quantities as follows.

[
I + ∆t

(
T1

(
Xℓ−1

1

)
+ T2

(
Xℓ−1

2

)
− T11

(
Xℓ−1

3 , Xℓ−1
4 , Xℓ−1

5

)
− T22

(
Xℓ−1

3 , Xℓ−1
4 , Xℓ−1

5

))]
; (155)

Xℓ
1 = Xℓ−1

1 (156)

[
I + ∆t

(
T1

(
Xℓ

1

)
+ T2

(
Xℓ−1

2

)
− T11

(
Xℓ−1

3 , Xℓ−1
4 , Xℓ−1

5

)
− T22

(
Xℓ−1

3 , Xℓ−1
4 , Xℓ−1

5

))]
. (157)

Xℓ
2 = Xℓ−1

2 (158)

[
I + ∆t

(
T1

(
Xℓ

1

)
+ T2

(
Xℓ

2

)
−R1

(
Xℓ−1

4 , Xℓ−1
5

))]
Xℓ

3 = Xℓ−1
3 + ∆tF1

(
Xℓ−1

4 , Xℓ−1
5

)
; (159)

[
I + ∆t

(
T1

(
Xℓ

1

)
+ T2

(
Xℓ

2

)
−R2

(
Xℓ

3, X
ℓ−1
4 , Xℓ−1

5

))]
Xℓ

4 = Xℓ−1
4 + ∆tF2

(
Xℓ

3, X
ℓ−1
5

)
; (160)

and

[
I + ∆t

(
T1

(
Xℓ

1

)
+ T2

(
Xℓ

2

)
−R3

(
Xℓ

3, X
ℓ
4

))]
Xℓ

5 = Xℓ−1
5 + ∆tF3

(
Xℓ

3, X
ℓ
4

)
. (161)

with T1, T2, T11, T22, R1, R2, R3, F1, F2 and F3 defined using the a spatial discretization of the terms in
(35)-(39) and associated boundary conditions. The modular formulation is as follows.� Module 1: (Flow-field)

[
I + ∆t

(
T1

(
Xℓ−1

1

)
+ T2

(
Xℓ−1

2

)
− T11

(
Xℓ−1

3 , Xℓ−1
4 , Xℓ−1

5

)
− T22

(
Xℓ−1

3 , Xℓ−1
4 , Xℓ−1

5

))]
; (162)

Xℓ
1 = Xℓ−1

1 (163)

[
I + ∆t

(
T1

(
Xℓ

1

)
+ T2

(
Xℓ−1

2

)
− T11

(
Xℓ−1

3 , Xℓ−1
4 , Xℓ−1

5

)
− T22

(
Xℓ−1

3 , Xℓ−1
4 , Xℓ−1

5

))]
; (164)

Xℓ
2 = Xℓ−1

2 (165)� Module 2: (Reaction)

[
I + ∆t

(
T1

(
Xℓ

1

)
+ T2

(
Xℓ

2

)
−R1

(
Xℓ−1

4 , Xℓ−1
5

))]
Xℓ

3 = Xℓ−1
3 + ∆tF1

(
Xℓ−1

4 , Xℓ−1
5

)
; (166)

[
I + ∆t

(
T1

(
Xℓ

1

)
+ T2

(
Xℓ

2

)
−R2

(
Xℓ

3, X
ℓ−1
4 , Xℓ−1

5

))]
Xℓ

4 = Xℓ−1
4 + ∆tF2

(
Xℓ

3, X
ℓ−1
5

)
; (167)

[
I + ∆t

(
T1

(
Xℓ

1

)
+ T2

(
Xℓ

2

)
−R3

(
Xℓ

3, X
ℓ
4

))]
Xℓ

5 = Xℓ−1
5 + ∆tF3

(
Xℓ

3, X
ℓ
4

)
. (168)
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The coupling terms in each module are polynomial with k = 1 in module 1 and k = 2 in module 2. Therefore,
based on Lemma 3, we can implement an intrusive Galerkin method or non-intrusive Least-squares method in
either modules. These different combinations of UQ methods are compared against the global intrusive and
non-intrusive formulations. The local parameters in module 1 are θ1 and θ2, whereas the local parameters
in module 2 are θ3, θ4, θ5 and θ6.

In Figure 17, 18 and 19, we plot a comparison of the results obtained using the various modularly hybrid
methods with the global intrusive or non-intrusive methods. Figure 19 shows the convergence history of
variance estimates.
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Figure 17: Mean and variance estimates of x4 obtained using global PC methods. (Top) Global factorized
Galerkin method. (Bottom) Global Collocation method.

6.5. Bayesian Inference of Flow and Reactive Transport in Heterogeneous Porous Media

In this study we apply Bayesian inference to the two-dimensional flow and reactive transport example
(Equation 123 and 145) with the parameter ranges (assuming all uniform distributions) given by Table 6.

Table 6: Uncertain Parameter description

Parameter Range Description

vx, vy(md−1) ξ1 ∼ U [−S1, S1] hydraulic head 1
vx, vy(md−1) ξ2 ∼ U [−S2, S2] hydraulic head 2
αx, αy = 0.1ξ3(m) ξ3 ∼ U [8, 12] dispersivity
k1 (day−1 ξ4 ∼ U [0.04, 0.06] reaction rate 1
k2 (day−1 ξ5 ∼ U [0.024, 0.036] reaction rate 2
k3 (day−1 ξ6 ∼ U [0.016, 0.024] reaction rate 3
k4 (day−1 ξ7 ∼ U [0.004, 0.006] reaction rate 4

In this scenario we selected two KL modes from the solution of the flow equation. These modes, together
with dispersivity and four reaction rates, form the set of uncertain parameteres to be calibrated. The
observation data is given in Table 7.
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Figure 18: Mean and variance estimates of x4 obtained using modular UQ methods. The methods
are labeled based on the strategy used in the respective modules. (Top) Galerkin+Galerkin. (Bottom)
Galerkin+Collocation.
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Table 7: Experimental Observations

Species Mean at (20,10) Std. Dev at (20.10) Mean at (20,30) Std. Dev at (20,30)

1 6.436e− 2 6e− 3 4.671e− 6 5e− 7
2 2.214e− 2 2e− 3 2.419e− 6 2e− 7
3 4.563e− 3 4e− 4 5.661e− 6 6e− 7
4 4.807e− 5 5e− 6 4.468e− 8 4e− 9
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Figure 20: Posterior distributions for the 7 uncertain parameters

The results (posteriors) for the 7 parameters are given in Figure 20. We observe from the posterior
plots that the best values of the second KL model (input 2), the first three reaction rates (input 4, 5, 6) lie
somewhere inside the prior distributions (which explain the humps), while the first KL mode (input 1) has
its best value in its far upper end. Finally, the dispersivity and reaction rate 4 do not seem to be sensitive
parameters.

7. Summary and Future Work

This report describes a new methodology to facilitate the propagation of uncertainty and sensitivity
through a multi-module simulation model where each module may be equipped with either intrusive, non-
intrusive, or semi-intrusive UQ schemes. We have developed the mathematics and a computational framework
to support the accurate coupling of these modules with diverse UQ schemes. We have demonstrated this
methodology on a few multi-physics multi-physics models.

Our experience with this methodology is that it has given us confidence to be a viable methodology for
practical applications. In the following we outline several areas of research and development that will further
advance this methodology.� Investigate parallelization strategies on high performance computers:
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Due to the tight coupling of hybrid UQ and the size of the stochastic model (orders of magnitude larger
than its deterministic counterpart), it is an excellent candidate for exascale computing. Since intrusive
and non-intrusive UQ modules exhibit different characteristics in the context of high performance
computing, effective parallelization will require detailed investigation into communication requirements,
degree of parallelism, memory requirement, and etc. Additionally, as solution of matrix systems may
take up much of the computational time, parallelization of the solution methods should also be closely
examined.� Investigate the interplay between uncertainties and numerical errors

One of our findings is that numerical errors (discretization, algorithmic) can have a significant effect on
the accuracy of the computed uncertainty measure. In addition, there may be tight coupling between
uncertainties and numerical sense, in the sense of second order effects. As such, the interplay between
uncertainties and numerical errors will (or has already) become an important issue. We maintain that
our modular UQ framework is ideal for such an investigation because this framework facilitates the
management (estimation and correction) of uncertainties and error at the module level. An effective
error mitigation scheme can also be used to detect and correct soft errors (for example, the flipping of
a bit in the computer hardware due to environmental factors).� Resolving discontinuities in the uncertain parameter space

As alluded to earlier in this report, our PCE-based hybrid UQ methodology has the deficiency, as with
all PCE-based methods, that it works best for smooth problems (smooth in the parameter space).
When discontinuities exist, a feasible remedy is to divide the parameter space into subdomains using
schemes such as multi-element, generalized polynomial chaos [46].
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8. Appendix

8.1. Element matrices in homogeneous media

In this appendix, we provide the formula for computing the element matrices Me, Ke
1 and Ke

2.
Me is derived from Eq. (91) as follows:

Me =

∫

Ωe
k

Φi (x) Φj (x) dx =

∫

Ωe
k





Φ1

Φ2

Φ3




[

Φ1 Φ2 Φ3

]
dx =

A

12





2 1 1
1 2 1
1 1 2



 (169)

where the Φi (x, y) is the shape function for the linear triangular element:

Φ1 =
1

2A
[(x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2) y] (170)

Φ2 =
1

2A
[(x3y1 − x1y3) + (y3 − y1)x+ (x1 − x3) y] (171)

Φ3 =
1

2A
[(x1y2 − x2y1) + (y1 − y2)x+ (x2 − x1) y] (172)

and

A =

∣
∣
∣
∣
∣
∣

1 x1 y1
1 x2 y2
1 x3 y3

∣
∣
∣
∣
∣
∣

(173)

is the area of each triangular element, where xi and yi be the coordinate value at the ith node.
Ke

1 and Ke
2 are derived from the two terms in Eq. (92):

Ke
1 = (Ke

1)ij =
1

R

∫

Ωe
k

(

αxvx ∂Φi

∂x

∂Φj

∂x
+ αyvx ∂Φi

∂y

∂Φj

∂y

)

dx 1 ≤ i, j ≤ 3. (174)

Ke
2 = (Ke

2)ij =
1

R

∫

Ωe
k

(

vxΦi
∂Φj

∂x
+ vyΦi

∂Φj

∂y

)

dx 1 ≤ i, j ≤ 3. (175)

which simplify to:

Ke
1 =

1

4AR





αxvxa2
1 + αyvxb21 αxvxa1a2 + αyvxb1b2 αxvxa1a3 + αyvxb1b3

αxvxa1a2 + αyvxb1b2 αxvxa2
2 + αyvxb22 αxvxa2a3 + αyvxb2b3

αxvxa1a3 + αyvxb1b3 αxvxa2a3 + αyvxb2b3 αxvxa2
3 + αyvxb23



 (176)

Ke
2 =

1

6R





vxa1 + vyb1 vxa2 + vyb2 vxa3 + vyb3
vxa1 + vyb1 vxa2 + vyb2 vxa3 + vyb3
vxa1 + vyb1 vxa2 + vyb2 vxa3 + vyb3



 (177)

where a1 = y1 − y3, a2 = x3 − x1, a3 = x1 − x2, b1 = x3 − x2, b2 = x1 − x3 and b3 = x2 − x1.

8.2. Stochastic Galerkin projection

The stochastic Galerkin projection of the Q+ 1 polynomial chaos bases onto equation (81) gives rise to
a (Q+ 1) × (Q+ 1) system, where each sub-problem (i, j) has the following form:

∂c

∂t
=

1

R

∂

∂x

[

Dx
ij (x)

∂c (x)

∂x

]

+
1

R

∂

∂y

[

Dy
ij (x)

∂c (x)

∂y

]

− 1

R

∂
[
V x

ijc (x, t)
]

∂x
− 1

R

∂
[
V y

ijc (x, t)
]

∂y
∈ Ω. (178)
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Here, V x
ij , V

y
ij , D

x
ij and Dy

ij are the effective velocity and dispersion coefficients corresponding to the sub-
problem (i, j). These quantities can be computed by substituting equation (144) in x- and y- direction
separately as follows:

Vij = 〈vΨiΨj〉
/〈

Ψ2
i

〉

=

〈(

f0 +
r∑

k=1

s′kfkηk

)

ΨiΨj

〉
/〈

Ψ2
i

〉

=

[

f0 〈ΨiΨj〉 +

〈(
r∑

k=1

s′kfkηk

)

ΨiΨj

〉]
/〈

Ψ2
i

〉

=

(

f0 〈ΨiΨj〉 +

r∑

k=1

s′kfk 〈ηkΨiΨj〉
)
/〈

Ψ2
i

〉
(179)

We assume the dispersivity α to be linear function of a random variable ξ. That is, α = γ+ βξ, in which
γ and β are constants, and their values depend on α’s uncertainty range. For the dispersion coefficients, we
have:

Dij = 〈αvΨiΨj〉
/〈

Ψ2
i

〉

=

〈

(γ + βξ)

(

f0 +

r∑

k=1

s′kfkηk

)

ΨiΨj

〉
/〈

Ψ2
i

〉

=

[

f0 〈(γ + βξ) ΨiΨj〉 +

r∑

k=1

s′kfk 〈ηk (γ + βξ)ΨiΨj〉
]
/〈

Ψ2
i

〉
. (180)

Due to the orthogonality of the stochastic expansion bases in WQ, the PCE-based stochastic variational
problem can be simplified and rewritten in terms of the stochastic global sparse matrices [M] and [K]:

[M] ˙[c] + [K] [c] = 0 (181)

where the stochastic global matrices [M] and [K] are constructed from the deterministic global mass matrices
M and stiffness matrices K (assembled from the finite-element method) as follows:

[M] =






M . . . 0
...

. . .
...

0 · · · M




 , [K] =






K0,0 . . . K0,Q

...
. . .

...
KQ,0 · · · KQ,Q




 . (182)

Here, Ki,j is the stiffness matrix corresponding to each sub-problem (i, j) from the (Q+ 1)×(Q+ 1) stochas-
tic global problem, and:

c = (c0, . . . , cQ)
T

is the stochastic concentration field, where ck = (c1,k, . . . , cℵ,k)
T
, 0 ≤ k ≤ Q, denotes the vector of nodal

values of the kth stochastic mode of the solution.
Using the backward Euler method, we can discretize equation (181) in time and rewrite it as:






M + K0,0∆t . . . K0,Q∆t
...

. . .
...

KQ,0∆t · · · M + KQ,Q∆t











c0

...
cQ






t+1/2

=






M . . . 0
...

. . .
...

0 · · · M











c0

...
cQ






t

. (183)
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Assuming uniform probability distributions for the random variables {αx, αy} and {ηi}r
i=1, we can exploit the

orthogonality of the Legendre polynomial chaos to approximate the mean and variance of the concentration
at each grid point i by:

c̄i

(

t+
1

2

)

= c
t+ 1

2

i,0

σ2
i

(

t+
1

2

)

=

Q
∑

k=1

(

c
t+ 1

2

ik

)2

. (184)

8.3. Element matrices in heterogeneous media

Again, denote by a1 = y1 − y3, a2 = x3 − x1, a3 = x1 − x2, b1 = x3 − x2, b2 = x1 − x3 and b3 = x2 − x1,
we can define that

∂Φi (x)

∂x
= ai

∂Φi (x)

∂y
= bi 1 ≤ i ≤ 3 (185)

Similarly, apply it to the second term and we have

(Kl)Ωe
k

=
(
Kl

ij

)

Ωe
k

= (βxaiaj + βybibj)

∫

Ωe
k

Yl (x) dx 1 ≤ i, j ≤ 3 l = 1, . . . , P k = 1, . . . , ne (186)

Denote by

(Il)Ωe
k

=

∫

Ωe
k

Yl (x) dx

=

∫

Ωe
k

exp

(

Ȳ (x) +

N∑

n=1

√

λnfn (x) ξnl (θ)

)

dx

=
3∑

i=1

∫

Ωe
k

exp

(

Ȳ (xi) +
N∑

n=1

√

λnfn (xi) ξnl (θ)

)

Φi (x) dx (187)

=
A

3

3∑

i=1

exp

(

Ȳ (xi) +

N∑

n=1

√

λnfn (xi) ξnl (θ)

)

and we obtain

(Il)Ωe
k

=
A

3

3∑

i=1

exp

(

Ȳ (xi) +

N∑

n=1

√

λnfn (xi) ξnl (θ)

)

k = 1, . . . , ne l = 1, . . . , P (188)

Hence, we obtain

(
Kl

ij

)

Ωe
k

= (βxaiaj + βybibj) (Il)Ωe
k

1 ≤ i, j ≤ 3, k = 1, . . . , ne l = 1, . . . , P (189)

To compute the effective flow velocity and dispersion coefficient for each sub-block (k, l), the following
quantity needs to be evaluated:

V x
kl (x) =

P∑

i=0

vx
i (x) eikl V y

kl (x) =
P∑

i=0

vy
i (x) eikl (190)

Hence, for each each sub-block (k, l), we have

∂c

∂t
= αx ∂

∂x

(

V x (x)
∂c (x)

∂x

)

+ αy ∂

∂y

(

V y (x)
∂c (x)

∂y

)

−V x ∂c (x, t)

∂x
− V y ∂c (x, t)

∂y
in Ω (191)
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The trial function ch and the test function wh can be written as

ch (x, t) =
∑

i∈N

ci (t)Φi (x) ∈ Vh

wh (x, t) =
∑

i∈N

wi (t)Φi (x) ∈ Vh (192)

By plugging the finite-element approximation ch and wh of c and w into the variational form, we have

∑

i,j∈N

aijciwj = 0 (193)

where

ai,j =

∫

Ω

∂Φi (x, t)

∂t
Φj (x) dx +

∫

Ω

(

αxV x (x)
∂Φi (x, t)

∂x

∂Φj (x)

∂x
+ αyV y (x)

∂Φi (x, t)

∂y

∂Φj (x)

∂y

)

dx

−
∫

Ω

(

V x (x)
∂Φi (x, t)

∂x
Φj (x) + V y (x)

∂Φi (x, t)

∂y
Φj (x)

)

dx. (194)

Apply it to the first term on the right hand side of the equation above, we obtain

Me =

∫

Ωe
k





Φ1

Φ2

Φ3




[

Φ1 Φ2 Φ3

]
dx =

A

12





2 1 1
1 2 1
1 1 2



 (195)

where

A =

∣
∣
∣
∣
∣
∣

1 x1 y1
1 x2 y2
1 x3 y3

∣
∣
∣
∣
∣
∣

(196)

is the area of each triangular element, where xi and yi be the coordinate value at the ith node.
Similarly, apply it to the second term and we have

(K1)Ωe
k

=
(
K1

ij

)

Ωe
k

=

∫

Ωe
k

(

αxV x (x)
∂Φi

∂x

∂Φj

∂x
+ αyV y (x)

∂Φi

∂y

∂Φj

∂y

)

dx

= αxaiaj

∫

Ωe
k

V x (x) dx + αybibj

∫

Ωe
k

V y (x) dx 1 ≤ i, j ≤ 3 (197)

Apply it to the third term and we have

(K2)Ωe
k

=
(
K2

ij

)

Ωe
k

= aj

∫

Ωe
k

(V x (x)Φi) dx + bj

∫

Ωe
k

(V y (x) Φi) dx 1 ≤ i, j ≤ 3. (198)

Denote by

(I11)Ωe
k

=

∫

Ωe
k

V x (x) dx =
A

3

3∑

i=1

V x
i (I12)Ωe

k
=

∫

Ωe
k

V y (x) dx =
A

3

3∑

i=1

V y
i (199)

and
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(
Ii
21

)

Ωe
k

=

∫

Ωe
k





3∑

j=1

V x
j ΦjΦi



dx

=

3∑

j=1

V x
j

∫

Ωe
k

ΦjΦidx

=

3∑

j=1,j 6=i

V x
j

A

12
+ V x

i

A

6
(200)

(
Ii
22

)

Ωe
k

=

∫

Ωe
k

(V y (x)Φi) dx

=

3∑

j=1,j 6=i

V y
j

A

12
+ V y

i

A

6
(201)

We obtain

(K1)Ωe
k

=
(
K1

ij

)

Ωe
k

= αxaiaj (I11)Ωe
k

+ αybibj (I12)Ωe
k

1 ≤ i, j ≤ 3 k = 1, . . . , ne (202)

and

(K2)Ωe
k

=
(
K2

ij

)

Ωe
k

= aj

(
Ii
21

)

Ωe
k

+ bj
(
Ii
22

)

Ωe
k

1 ≤ i, j ≤ 3 k = 1, . . . , ne (203)

All the elementary matrix and vectors can be assembled into the global matrix M, K1, K2, and K.
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